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Invariance in Structural Models1

1 Introduction

This paper shows how an algebraic tool, Lie symmetries of differential equations, may
be used in formulating structural models in Economics. Such models are heavily used
for the design and evaluation of policy plans. For the latter one needs structural mod-
els, featuring stable relations, optimal behavior by agents, and parameters which are
policy invariant. There are, however, well known hurdles and problems when coming
to formulate such models: they may not have a closed form solution; theory typically
provides limited guidance for the specification of functional forms of the model; it may
be difficult to select a model out of a number of formulations, which derive from a
single theoretical framework and fit the data well, but imply different counterfactual
predictions; and the full set of invariant policy parameters may not be known. The
algebraic technique of Lie symmetries of differential equations provides a solution to
these problems. It allows for the derivation of the complete set of invariance conditions
in economic optimization problems. This greatly facilitates the formulation of struc-
tural models, which can then be taken to the data.

A symmetry is an invariance under transformation. This concept is usually known
for the case of the invariance of functions, the homothetic utility or production func-
tions being the most well-known special cases. In this paper we employ Lie symme-
tries, which are symmetries of differential equations, and do so in the context of eco-
nomic optimization problems. Importantly, the symmetries provide the solutions of
these equations, or generate rich information with respect to the properties of the solu-
tions, even when no closed-form solutions exist. They derive the full set of conditions
whereby the solutions remain invariant.

We demonstrate how this algebraic method works through an application, using a
key model in Finance, which is also isomorphic to benchmark models used in Macroco-
nomics. The symmetries impose restrictions on the model and define functional forms,
which can then be estimated. Thus, the symmetries define the objects for structural
econometric estimation to be used for policy design and evaluation. The emerging
functional forms also facilitate aggregation and the construction of equilibrium mod-
els.

There is an abundance of optimality equations in Economics, which are PDE with

1We thank Tzachi Gilboa, Jim Heckman, and Ryuzo Sato for useful conversations. Any errors are our own.
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complicated structures,2 that can be constructively explored using the Lie symmetries
methods presented in this paper. We discuss key models at the research frontier, which
would be amenable to such analysis, focusing on what we see as the most promising
and important ones currently. This provides a road map for a potentially important
new literature.

The paper proceeds as follows: in Section 2 we briefly discuss seminal and survey
papers in the structural econometrics literature and cite the key relevant references in
the Lie symmetries literature. In Section 3 we relate the idea of invariance of optimal
behavior in an economic model, which can be subject to policy plans, with invariant
structural models in empirical studies, which may be used to design and evaluate pol-
icy. In Section 4 we elucidate the mathematical concept of Lie symmetries of differential
equations. In Section 5 we discuss the implementation of this algebraic methodology,
including a sub-section (5.4) which presents the implications for the study of economic
policy and discusses the connections of the model and its symmetries to structural
econometrics. Section 6 discusses specific models at the research frontier amenable
to this analysis. Section 7 concludes.

2 The Literature

This paper relates to two strands of literature.
Structural econometrics for policy design and evaluation. Econometric work with in-

variant structures, in the context of causal analysis and policy design and evaluation, is
reviewed and discussed in Heckman and Vytlacil (2007, see Section 4), Heckman (2008),
Heckman and Pinto (2014), Athey and Imbens (2017), and Low and Meghir (2017). The
seminal work on these topics can be traced back to Frisch (1938) and Haavelmo (1943),3

with important further developments in the work of the Cowles Commission (and,
later, Foundation) in the 1940s, 1950s and 1960s. In Macroeconomics and Finance, a
major turning point was associated with the Lucas (1976) critique of reduced-form em-

2For a review of PDE equations in Macroeconomics see Achdou, Buera, Lasry, Lions, and Moll (2014).
3An interesting fact to note is a Norwegian or an Oslo University “connection”: the fundamental math-

ematical work on symmetries of differential equations was undertaken by Sophus Lie (1842-1899), a Nor-
wegian, who got his PhD at the University of Christiania, now Oslo, in 1871. The econometric approach
making use of invariant structures was proposed by Ragnar Frisch (1895-1973), a Norwegian, who got his
PhD at the University of Oslo, in 1926. Frisch was editor of Econometrica for over 20 years (1933-1954)
and won the 1969 Nobel prize (shared with Jan Tinbergen). Important developments of the econometric
work on this topic were introduced by Trygve Haavelmo (1911-1999), a Norwegian, who was professor of
Economics and Statistics at the University of Oslo for more than 30 years (1948–79). He was awarded the
Nobel prize in 1989.
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pirical models, which was built on these early insights. This approach was advanced
by the development of structural estimation and Rational Expectations Econometrics,
mostly associated with the work of Sargent and Hansen (see, for example, Hansen and
Sargent (1980) and Hansen (2014)). The relationship of this econometric literature with
the current paper is that we show how the application of Lie symmetries to economic
optimization problems yields restrictions on the model, which can then be estimated
using structural econometrics. In this context the following definition by Heckman and
Vytlacil (2007, p.4848) is pertinent:

“A more basic definition of a system of structural equations, and the
one featured in this chapter, is a system of equations invariant to a class
of modifications. Without such invariance one cannot trust the models to
forecast policies or make causal inferences.”

Lie Symmetries. In the Mathematics literature, Olver (1993, 1999, 2012) offers exten-
sive formal discussions of the concept and use of Lie symmetries, including applica-
tions. In particular, the prolongation methodology, which is a key one and is presented
in sub-section 5.2.1 below, is discussed at length. There are a number of software codes
for symbolic analysis of Lie symmetries; see reviews in Filho and Figueiredo (2011) and
Vu, Jefferson and Carminati (2012) and applications in Kaibe and O’Hara ( 2019).

Pioneering contributions to economic applications of Lie algebra were made by Sato
(1981) and Sato and Ramachandran (1990), with further developments in Sato and Ra-
machandran (2014) and references therein. For applications in Finance, see Sinkala,
Leach, and O’Hara (2008 a,b) and Kaibe and O’Hara (2019). We are not aware, though,
of applications of Lie symmetries for the modelling of structural models with invariance
in Economics as this paper does.

3 Invariance of Optimal Economic Behavior and Structural Mod-
els

We connect the idea of invariance of optimal behavior in an economic model, which can
be subject to policy plans, with invariant structural models to be subsequently used in
empirical studies, which may serve for policy design and evaluation.

We begin with the latter. Discussing structural analysis in Econometrics, Heckman
and Vytlacil (2007) propose the following definitions and examples.
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p. 4827. The traditional model of econometrics is the “all causes” model.
It writes outcomes as a deterministic mapping of inputs to outputs:

y(s) = gs(x, us) (1)

where x and us are fixed variables specified by the relevant economic the-
ory. This notation allows for different unobservables us to affect different
outcomes. Ð is the domain of the mapping gs : Ð→ Ry, where Ry is the
range of y. There may be multiple outcome variables. All outcomes are
explained in a functional sense by the arguments of gs in (1). If we model
the ex post realizations of outcomes, it is entirely reasonable to invoke an
all causes model. Ex post, all uncertainty has been resolved. Implicit in the
definition of a function is the requirement that gs be “stable” or “invariant”
to changes in x and us. The gs function remains stable as its arguments are
varied. Invariance is a key property of a causal model.

pp. 4846-7. Parameters of a model or parameters derived from a model
are said to be policy invariant with respect to a class of policies if they are not
changed (are invariant) when policies within the class are implemented...

More generally, policy invariance for f , g or { fs, gs}s∈S requires for a
class of policies PA ⊆ P,

(PI-5). The functions f , g or { fs, gs}s∈S are the same for all values of the argu-
ments in their domain of definition no matter how their arguments are determined,
for all policies in PA...

In the econometric approach to policy evaluation, the analyst attempts to
model how a policy shift affects outcomes without reestimating any model.
Thus, for the tax and labor supply example..., with labor supply function
hs = h(w(1− s), x, us), it is assumed that we can shift tax rate s without af-
fecting the functional relationship mapping (w(1− s), x, us) into hs . If, in
addition, the support of w(1− s) under one policy is the same as the support
determined by the available economic history, for a class of policy modifi-
cations (tax changes), the labor supply function can be used to accurately
predict the outcomes for that class of tax policies.

In most cases of interest, the functions of the kind discussed above by Heckman
and Vytlacil (2007), are derived from an optimization problem. Thus, for example, the
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labor hours supply function emerges from maximization of worker utility, subject to
constraints. When these optimization problems feature differential equations – such
as the HJB equation discussed in the main example of the current paper – Lie symme-
tries can be used to derive the full set of solutions to the optimization problem. The
functions in these solutions satisfy the invariance properties discussed above. Hence
structural models featuring the invariance needed for structural econometrics can be
derived using Lie symmetries.

Olver (1993, p.93) offers the following formal definition.4

DEFINITION 2.23. Let L be a system of differential equations. A sym-
metry group of the system L is a local group of transformations G acting on
an open subset M of the space of independent and dependent variables for
the system with the property that whenever p = f (x) is a solution of L, and
whenever g · f is defined for g ∈ G, then p = g · f (x) is also a solution of
the system.5

In economic applications, policy, such as the tax example givan above, may underlie
the transformations of G, and the idea of ‘policy modification’ in an invariant structural
model maps to a symmetry group. To be more concrete, consider hs (in the Heckman
and Vytlacil (2007) text above) as the function in question. It is defined over w(1− s).
Hence g could be translation such that

(w(1− s)) 7−→ (w(1− αs)),

α ∈ R

The shift in s can be modelled as hs1 = g · hs0 .Thus, by the Lie symmetries definition,

4For exact definitions of the key mathematical concepts used here, see Appendix A.
5Note that:

a. g · f means the transformation g on the function f , thereby expressing the action of the symmetry
group G on the function f . The dot here is not the multiplication sign.

b. A transformation group acting on a smooth manifold M is determined by a Lie group G and smooth
map Φ : G×M→ M, denoted by Φ(g, x) = g·x, which satisfies the following:

e · x = x,cHECK
g · (h · x) = (g · h) · x,
for all x ∈ M, g ∈ G.
A Lie group G is a smooth manifold which is also a group, such, that the group multiplication (g, h) 7−→

g·h and inversion g 7−→ g−1 define smooth maps.
c. The action is taking place on the space of optimal solutions, not of the variables. This mean that if

f (s) is a function in this space, and g an element of the symmetry group, G, then g · f will be an optimal
solution function in this space.
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if

hs0 = h(w(1− s0), x, us)

is a solution (to the optimality conditions of the labor supply problem) then

hs1 = g · h(w(1− s1), x, us)

• is also a solution, where s1 = αs0.

Similarly, g can be an additive shift or one of many, much more complex, shifts. The
issue is to find what is the symmetry group G that satisfies these relations and this is
where Lie symmetries analysis comes into play. Note that if we find such a symmetry
we know under what conditions “we can shift tax rate s without affecting the functional
relationship mapping (w(1− s), x, us) into hs.” Because of an i f f property we discuss
below, we then know all of the relevant conditions.

We turn now to describe Lie symmetries and show how they work.

4 Lie Symmetries

We briefly introduce the mathematical concept of Lie symmetries of differential equa-
tions.

Lie symmetries of differential equations are the transformations which leave the
space of solutions invariant. We begin by explaining the concept of invariance of differ-
ential equations, culminating by the derivation of the prolongation equation, which is
key in deriving the Lie symmetries of a differential equations system. In making the ex-
position here we are attempting to balance two considerations: the need to explain the
mathematical derivation and the constraint that an overload of mathematical concepts
may be burdensome to the reader.

Consider the differential equation:

L(t, x, y, p) = 0 (2)

where x = x(t), y = y(x), p = dy
dx and t is time.

The transformation:
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x′ = φ(x, y, t) (3)

y′ = ψ(x, y, t)

implies the transformation of the derivative p = dy
dx to:

p′ =
dy′

dx′
=

∂ψ
∂x dx+ ∂ψ

∂y dy
∂φ
∂x dx+ ∂φ

∂y dy
=

∂ψ
∂x +

∂ψ
∂y p

∂φ
∂x +

∂φ
∂y p

(4)

The differential equation (2) will be invariant under the transformation x → x′ and
y→ y′ (i.e., one integral curve is mapped to another) if and only if it is invariant under:

x′ = φ(x, y, t)

y′ = ψ(x, y, t)

p′ = χ(x, y, p, t) (5)

The condition for transformation (5) to leave the differential equation (2) invariant
is:

H′L ≡ ξ
∂L
∂x
+ η

∂L
∂y
+ η′

∂L
∂p
= 0 (6)

where:

H = (
∂φ

∂t
)0

∂

∂x
+ (

∂ψ

∂t
)0

∂

∂y

= ξ
∂

∂x
+ η

∂

∂y

ξ ≡ (
∂φ

∂t
)0 η ≡ (∂ψ

∂t
)0

η′ ≡ ∂η

∂x
+ (

∂η

∂y
− ∂ξ

∂x
)p− ∂ξ

∂y
p2

and the subscript 0 denotes the derivative at t = 0; the notation ∂
∂x is used for a di-

rectional derivative i.e., the derivative of the function in the direction of the relevant
coordinate axis, assuming space is coordinated. For this and other technical concepts,
see Chapter 1 in Sato and Ramachandran (1990).
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To see the intuition underlying equation (6) consider the invariance of a function (a
generalization of homotheticity) rather than that of a differential equation: a function
f (x, y) is invariant under a transformation x → x′ and y → y′ if f (x, y) = f (x′, y′).
Using a Taylor series and infinitesimal transformations we can write:

f (x′, y′) = f (x, y) = f (x, y)− sH f +
s2

2
H2 f + ....

It is evident that the necessary and sufficient condition for invariance in this case is:

H f = 0 (7)

Equation (6) is the analog of equation (7) for the case of a differential equation. It
is called the prolongation equation and it is linear in ξ and η.6 Finding the solution
to it gives the infinitesimal symmetries from which the symmetries of the differential
equation itself may be deduced.

The power of this theory lies in the notion of infinitesimal invariance: one can re-
place complicated, possibly highly non-linear conditions for invariance of a system by
equivalent linear conditions of infinitesimal invariance. This is analogous to the use of
derivatives of a function at a point to approximate the function in the neighborhood
of this point. Likewise, the infinitesimal symmetries are “derivatives” of the actual
symmetries and the way to go back from the former to the latter is through an expo-
nentiation procedure.

The Lie symmetries are derived by calculating their infinitesimal generators, which
are vector fields on the manifold composed of all the invariance transformations. Find-
ing these generators is relatively easy, as it is more of an algebraic calculation, while
finding the invariance transformations directly amounts more to an analytic calcula-
tion. After finding the infinitesimal generators, we “exponentiate” them to get the ac-
tual invariant transformations.

A general infinitesimal generator is of the form:

v = ξ(x, t, u)
∂

∂x
+ τ(x, t, u)

∂

∂t
+ φ(x, t, u)

∂

∂u
(8)

We determine all the possible functions ξ, τ, φ through the prolongation equation,
which puts together all the possible constraints on the functions ξ, τ, φ. We show how

6The full prolongation formula is presented in Olver (1993) in Theorem 2.36 on page 110. This term
comes from the idea of “prolonging” the basic space, representing the independent and dependent vari-
ables under consideration, to a space, which also represents the various partial derivatives occurring in
the system.
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this is implemented in the next Section, when applying Lie symmetries to a fundamen-
tal optimization problem in Economics.

5 An Implementation Example

To show how this methodology works, we implement Lie symmetries in the Merton
(1969, 1971) model of consumer-investor choice. We chose this model for our im-
plemetation example for two reasons: first, it is a fundamental model in Macroeco-
nomics7 and Finance, featuring a differential equation defining optimal behavior at its
core. It has straightforward taxation policy aspects, and it is amenable to structural
econometrics. Second, the model and its solution are very familiar to economists. Thus
the idea is not to propose a new model or to discuss a model without a closed-form
solution, but rather to demonstrate the implementaiton of Lie symmetries and discuss
the emerging insights.

5.1 A Macro-Finance Model

We briefly present the main ingredients of the consumer-investor optimization problem
under uncertainty as initially formulated and solved by Merton (1969, 1971)8. A key
point, which merits emphasis, is that in what follows we do not just show that this
model can be solved in a different way. Rather, we use Lie symmetries to solve it and
derive the full set of invariance conditions.

The essential problem is that of an individual who chooses an optimal path of con-
sumption and portfolio allocation. The agent begins with an initial endowment and
during his/her lifetime consumes and invests in a portfolio of assets (risky and risk-
less). The goal is to maximize the expected utility of consumption over the planning
horizon and a “bequest” function defined in terms of terminal wealth.

Formally the problem may be formulated in continuous time, using Merton’s nota-
tion, as follows: denote consumption by C, financial wealth by W, time by t (running
from 0 to T), utility by U, and the bequest by B. There are two assets used for invest-
ment,9 one of which is riskless, yielding an instantaneous rate of return r. The other

7The Ramsey model and the stochastic growth model, which underlie business cycle modelling, are
basically variants of this model.

8For a discussion of developments since the initial exposition of these papers see Merton (1990, Chapter
6), Duffie (2003), and Skiadas (2009, Chapters 3,4 and 6).

9The problem can be solved with n risky assets and one riskless asset. As in Merton (1971) and for the
sake of expositional simplicity, we restrict attention to two assets. Our results apply to the more general
case as well.
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asset is risky, its price P generated by an Ito process as follows:

dP
P
= α(P, t)dt+ σ(P, t)dz (9)

where α is the instantaneous conditional expected percentage change in price per unit
time and σ2 is the instantaneous conditional variance per unit time.

The consumer seeks to determine optimal consumption and portfolio shares accord-
ing to the following:

max
(C,w)

E0

{∫ T

0
U[C(t), t]dt+ B[W(T), T]

}
(10)

subject to

dW = w(α− r)Wdt+ (rW − C)dt+ wWσdz (11)

W(0) = W0 (12)

where w is the portfolio share invested in the risky asset. All that needs to be assumed
about preferences is that U is a strictly concave function in C and that B is concave in
W. See Kannai (2004, 2005) for discussions of utility function concavity as expressing
preference relations.

Merton (1969, 1971) applied stochastic dynamic programming to solve the above
problem. In what follows we repeat the main equations; see Sections 4-6 of Merton
(1971) for a full derivation.

Define:
(i) An “indirect” utility function:

J(W, P, t) ≡ max
(C,w)

Et

{∫ T

t
U(C, s)ds+ B[W(T), T]

}
(13)

where Et is the conditional expectation operator, conditional on W(t) = W and P(t) =
P.

(ii) The inverse marginal utility function:

G ≡ [∂U/∂C]−1 ≡ UC
−1(C) (14)

The following notation will be used for partial derivatives: UC ≡ ∂U/∂C, JW ≡ ∂J/∂W, JWW ≡
∂2 J/∂W2, and Jt ≡ ∂J/∂t.
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A sufficient condition for a unique interior maximum is that JWW < 0 i.e., that J be
strictly concave in W.

Merton assumes “geometric Brownian motion” holds for the risky asset price, so α

and σ are constants and prices are distributed log-normal. In this case J is independent
of P, i.e., J = J(W, t).

Time preference is introduced by incorporating a subjective discount rate ρ into the
utility function:

U(C, t) = exp(−ρt)Ũ(C, t) (15)

The optimal conditions are given by:

exp(−ρt)ŨC(C∗, t) = JW (16)

(α− r)W JW + JWWw∗W2σ2 = 0 (17)

where C∗, w∗ are the optimal values.
Combining these conditions results in the so-called Hamilton-Jacobi-Bellman (HJB)

equation, which is a partial differential equation for J,10 one obtains:

U(G, t) + Jt + JW (rW − G)− J2
W

JWW

(α− r)2

2σ2 = 0 (18)

subject to the boundary condition J(W, T) = B(W, T). Merton (1971) solved the equa-
tion by restricting preferences, assuming that the utility function for the individual is a
member of the Hyperbolic Absolute Risk Aversion (HARA) family of utility functions.
The optimal C∗ and w∗ are then solved for as functions of JW and JWW , the riskless rate
r, wealth W, and the parameters of the model (α and σ2 of the price equation and the
HARA parameters).

5.2 The Symmetries of the Model

We now derive the symmetries of the HJB equation (18) using the prolongation method-
ology. Two issues should be emphasized: (i) the symmetries are derived with no as-
sumption on the functional form of the utility function except its concavity in C, a nec-
essary condition for maximization; (ii) the optimal solution depends on the derivatives
of the indirect utility function J, which, in turn, depends on wealth W and time t. The

10For a succint mathematical summary of HJB equations see Lions (1983).
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idea is to derive transformations of t and W that would leave the optimality equation
invariant. These transformations do not require imposing any restrictions on the end
points, i.e., transversality conditions, of the type usually needed to obtain a unique
solution to optimal control problems.11

In economic terms, this means that if wealth varies, because of taxation, the optimal
solution remains invariant. The underlying interest in the invariance of the optimality
equations is that we would like to have invariance of the structure of the solution across
different levels of wealth.

5.2.1 Application of the Prolongation Methodology

In order to calculate the symmetries of the HJB equation (18), which is a p.d.e., we first
calculate the infinitesimal generators of the symmetries, and then exponentiate these
infinitesimal generators to get the symmetries themselves. An infinitesimal generator
ν of the HJB equation has the following form, as in equation (8) above:

ν = ξ(W, t, J)
∂

∂W
+ τ(W, t, J)

∂

∂t
+ φ(W, t, J)

∂

∂J
(19)

Here ξ, τ, φ are functions of the variables W, t, J. The function J, as well as its partial
derivatives, become variables in this method of derivation of the symmetries. In order
to determine explicitly the functions ξ, τ, φ we prolongate the infinitesimal generator
ν according to the prolongation formula of Olver (1993, page 110) and the equations
thereby obtained provide the set of constraints satisfied by the functions ξ, τ, φ (see
details in Olver (1993, pages 110-114), whose notation we use throughout).

The prolongation equation applied to ν yields:

[
rξ JW − ρτe−ρtU(G(eρt JW)) + (rW − G(eρt JW))φ

W + φt
]

J2
WW (20)

+2AφW JW JWW − AφWW J2
W = 0

where φW , φt, φWW are given by:

φW = φW + (φJ − ξW)JW − τW Jt − ξ J J2
W − τ J JW Jt

φt = φt − ξt JW + (φJ − τt)Jt − ξ J JW Jt − τ J J2
t

11The symmetries, however, do not restrict the optimal solution to be unique.
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φWW = φWW + (2φW J − ξWW)JW − τWW Jt + (φJ J − 2ξW J)J
2
W

−2τW J JW Jt − ξ J J J3
W − τ J J J2

W Jt + (φJ − 2ξW)JWW

−2τW JWt − 3ξ J JW JWW − τ J Jt JWW − 2τ J JW JWt

Use (20) to derive the following restrictions:12

φt = 0 (21)

τt = 0

Thus we gather that τ = Constant and φ = Constant and we are left with the
following equation for the ξ function:

eρt(rξ − ξt − rWξW)JW + ξW G(eρt JW)eρt JW − ρτU(G(eρt JW)) = 0 (22)

From this we deduce that ξW = 0 unless the following functional equation is satis-
fied

G(eρt JW)eρt JW − γU(G(eρt JW)) = 0 (23)

in which γ is a constant scalar. The last statement is of particular importance in the
current context, as will be shown below.

We end up with the following constraints for the infinitesimal generators:

φt = 0 (24)

ρτ = φ (25)

ξW = 0 (26)

The last equation holds true unless equation (23) is satisfied.

12The appendix shows the full derivation.
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5.2.2 The Symmetries

The constraints, which we have derived, on the functions ξ, τ, φ and their derivatives
completely determine the infinitesimal symmetries, which are given by:

Symmetry 1 φt = 0
If J(W, t) is a solution to the HJB equation, then so is J(W, t) + k for any k ∈ R.

Symmetry 2 ρτ = φ

If J(W, t) is a solution of the HJB equation, so is e−ρτ J(W, t+ τ) for any τ ∈ R.

Symmetry 3 ξW = 0
If J(W, t) is a solution of the HJB equation, so is J(W + kert, t) for any k ∈ R.

For a general specification of the utility function, the HJB equation of the model
admits only the above three symmetries. However, from the constraints above we also
get that in case that the utility function satisfies the functional equation (23), and only
in that case, there is an extra symmetry for the HJB equation.

Consider the implications of equation (23). For this we need first the following.

Lemma 1 The functional equation

G(x)x− γU(G(x)) = 0 (27)

where G = (U′)−1 , is satisfied by a utility function U iff U is of the HARA form.

Proof. Upon plugging in the equation a utility U(x) of the HARA form we see the
functional equation above is satisfied. Going the other way, after differentiating the
equation with respect to x, we get the ordinary differential equation:

G′x+ G− ε(xG′) = 0

The solutions of this equation form the HARA class of utility functions. Then we take
the inverse function to get U′ and after integration we get that U is of the HARA form.

When the functional equation (23) holds true and Lemma 1 is relevant, the expo-
nentiation of the infinitesimal generators yields a fourth symmetry as follows.
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Symmetry 4
If J(W, t) is a solution, then so is ekγ J(e−k{W + (1−γ)η

βr } − η (1−γ)
βr , t) for any k ∈ R.

In words, this fourth symmetry says that if J(W, t) is a solution then a linear function
of J is also a solution. Calculation of the solutions to the functional equation in Lemma
1 shows that only utility functions of the HARA class satisfy it. The HARA function is
expressed as follows:

Ũ(C) =
1− γ

γ

(
βC

1− γ
+ η

)γ

(28)

The special case of the CRRA function Cγ

γ has β = (1− γ)−
(1−γ)

γ , η = 0. The cases of
logarithmic utility (ln C) and exponential utility (−e−βC) are limit cases.

We note a distinction between two concepts: (i) restrictions on the utility function
for scale invariance of the preference relation, which is a topic that is not treated here,
and was dealt with in seminal work by Skiadas (2009, Chapters 3 and 6, 2013); (ii) scale
invariance of an optimality equation, in the form of a differential equation, which is the
object of inquiry here.

5.3 Economic Interpretation

The first three symmetries formulate “classical” principles of utility theory and there are
no new insights gained from them.13As noted, for a general specification of the utility
function, the HJB equation of the model admits only the above three symmetries. But
if equation (23) is satisfied, the fourth symmetry above places restrictions on the utility
function, and is the main point of interest here. Because k is completely arbitrary any
multiplicative transformations of W, i.e., e−kW, apply.14 Such transformations are the
most natural ones to consider when thinking of taxation policy. Thus, this symmetry
states the following: the optimum, expressed by the J function, i.e., maximum expected
life-time utility, will remain invariant under multiplicative transformations of wealth
W if and only if HARA utility is used. Note well that HARA utility is implied by this

13Symmetry 1 represents a formulation of the idea that utility is ordinal and not cardinal; symmetry 2
expresses the property that displacement in calendar time does not change the optimal solution; symmetry
3 expresses a property with respect to W that is similar to the property of aymmetry 2 with respect to t : if
the solution is optimal for W then it is also optimal for an additive re-scaling of W; the term ert keeps the
additive k constant in present value terms.

14If, together with the multiplicative transformation, there is also an additive transformation of W, ex-

pressed by the term e−k
(
(1−γ)η

βr

)
− η

(1−γ)
βr , then it is further restricted by the parameters of the HARA

utility function, and features the same arbitrary constant k used for the multiplicative transformation.
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symmetry, not assumed a-priori. This does not imply, though, that there is a unique
such J but it does express a property of any J which solves the HJB equation.

It should be emphasized that Symmetry 4 establishes the conditions for invariance
without solving the model. The analysis of Lie symmetries does not necessitate the as-
sumption of particular forms for the utility functions, solving the optimality equations,
and comparing the optimal solutions across the assumed functions. Hence, Symme-
try 4 establishes the HARA requirement without assuming any functional form for the
utility function and without solving the model in closed form.

5.4 The Implications for Structural Economic Policy Analysis

Symmetry 4 has the following implications for structural models used for economic
policy analysis.

(i) The form of the utility function and invariance of the optimal solution. The HARA
form is determined by the symmetry. The idea, then, is that there is an interdepen-
dence between the functional form of preferences (the form of the utility function) and
the requirement that the optimal solution will remain invariant under multiplicative
wealth transformations. This kind of invariance underpins empirical undertakings as
discussed in Section 3 above.

(ii) Scale Invariance and Linear Optimal Rules. In Merton (1971, p. 391) the following
theorem is presented and proved:

THEOREM III. Given the model specified...C∗ = aW + b and w∗W =

gW + h where a, b, g, and h are, at most, functions of time if and only if
U(C, t) ⊂ HARA(C).

The result we obtain above – Symmetry 4 – can be stated as follows:

Theorem 2 Given the model specified in this section, then Symmetry 4 (the scaling symmetry)
is satisfied if and only if U(C, t) ⊂ HARA(C).

Combining the last theorem with Merton’s theorem III, we get:

Corollary 3 Given the model specified in this section, then C∗ = aW+ b and w∗W = gW+ h
where a, b, g, and h are, at most, functions of time, if and only if Symmetry 4 (the scaling
symmetry) is satisfied.
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The proof of this corollary does not necessitate a specific solution to the HJB equa-
tion in the model, and in any case it is impossible to give a precise solution when the
utility function is not specified. This means that wealth scale invariance implies lin-
ear optimal solutions to the control variables (C∗, w∗) and linear optimal rules imply
scale invariance. Scale invariance determines the relevant linear parameters of optimal
behavior.

This is not simply a re-statement of Merton’s (1969, 1971) results. The latter papers
have assumed HARA utility and then solved the HJB equation.15 Here Symmetry 4
shows that utility has to be HARA, so that the consumer-investor problem be invariant
for economic plausibility and for structural empirical investigation. This is established
even without solving the HJB equation.

Such structural, invariant, linear relations are very useful for policy design and eval-
uation.

(iii) Comparisons Across Consumers/Investors. If we know that we can compare the
outcome of two different consumers/investors as a linear function of the ratio of their
wealth stocks, then necessarily the utility function of the agents is of the HARA form.
This allows for interpersonal comparisons for policy purposes, for example, when tax-
ation is a function of the level of wealth W.

(iv) Aggregation and Equilibrium Modelling. The linearity facilitates aggregation and
the use of representative agent modelling. It is highly important for the construction of
an equilibrium model, such as the seminal Merton (1973) intertemporal CAPM model,
which embeds this set-up. Once more, this greatly facilitates tax policy analysis.

(v) Structural Econometrics. Consider structural econometrics in the context of this
model. We have the consumer-investor optimal behavior functions, which are the opti-
mal solutions to the HJB equations in the Merton (1969,1971) model, If policy changes
wealth through taxation, then equations (16)-(17) offer a structural model, conforming
the afore cited definitions by Heckman and Vytlacil (2007). This model can be estimated
across agents and over time for γ, β, η, and the parameters of the stochastic process.

6 Possible Applications at the Research Frontier

The preceding analysis has demonstrated the use of Lie symmetries as a tool to derive
invariance restrictions in economic optimization problems, thereby facilitating the use
of structural models. We have used a model which has a closed form and well-known

15See, for example, pp. 388-391 in Merton (1971).
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solution. In what follows, we point to more complicated models, some of which have
no closed-form solutions or well-defined functional forms. These models are, however,
amenable to the same analysis. Note that there are likely to be many different prob-
lems that would yield restrictions of the type explored here. We consider the following
models, which are at the research frontier, noting policy issues for each.

Counter-factual equivalence. The use of Lie symmetries can greatly extend the scope
of models examined using the principle of counterfactual equivalence, suggested by Be-
raja (2020) for macroeconomic models. His idea is as follows: counterfactuals in struc-
tural models are a leading way to analyze policy rule changes, because they are immune
to the Lucas Critique. But there are issues as to the appropriate choice of model prim-
itives for these structural models. For example: how do the effects of policy change
under variations in the policy rule for different primitives? How does the modeler de-
cide on these primitives? Beraja (2020) proposes methods to deal with these issues. The
methods rest on the insight that many models, which are well approximated by a lin-
ear representation, are both observationally equivalent under a benchmark policy and
yield an identical counterfactual equilibrium under alternative policy. These are called
“counter-factually equivalent models.” They can be found through analysis of linear re-
strictions. One can then know which models will be observationally equivalent under
both benchmark and alternative (counterfactual) policy rules, and which will not be. As
an example, consider one application examined by Beraja (2020). He shows that search
models are counter-factually equivalent across those DMP-type models, which change
the primitives of firms’ incentives or the job creation technology structure. But models,
which change the primitives of wage setting and bargaining, are not counter-factually
equivalent.

The algebraic method of Lie symmetries can be used in this context as follows. Write
the relevant model equilibrium equations as differential equations. Note that these do
not have to be linear, as in Beraja’s case. Derive the Lie symmetries for these differential
equations. Use the symmetries to identify restrictions on the relevant structural model
primitives such that the model remains invariant under policy rules variations. Those
models that satisfy these restrictions are counter-factually equivalent.

Heterogenous Agents and Policy Regimes. The problem of modelling optimal behav-
ior in an economy with heterogenous agents is amenable to such analysis. This kind
of problem is an important one in complex DSGE models with heterogeneous agents,
which have become pervasive in business cycle modelling; see Krueger, Mitman, and
Perri (2016) for a recent overview. Invariance issues are highly pertinent in these mod-
els. Thus, for example, Chang, Kim, and Schorfheide (2013) simulate data from a
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heterogeneous-agents economy, under various policy regimes, and then estimate an ap-
proximating representative-agent model. They find that preference and technology pa-
rameter estimates of the representative-agent model are not invariant to policy changes.
Indeed they find that the bias in the representative-agent model’s policy predictions is
large. They conclude that “since it is not always feasible to account for heterogeneity
explicitly, it is important to recognize the possibility that the parameters of a highly
aggregated model may not be invariant with respect to policy changes.” Lie symme-
tries can provide conditions for aggregator functions and restrictions on the multitude
of functions in the model, such as the utility, production, or costs functions. The latter
can include price, labor, capital, and financial frictions. Beyond providing restrictions,
the symmetries inform the researcher on the properties of the solution, including cases
whereby closed-form solutions do not exist. These conditions and restrictions may be
very useful in generating insights on key issues, such as the marginal propensity to con-
sume across heterogenous consumers, the response of consumption behavior to mone-
tary policy and to fiscal policy, and the response of heterogenous firms to these policies.
As mentioned above for the Merton (1973) intertemporal CAPM model, equilibrium
characterizations are facilitated by the invariant structure uncovered by the symme-
tries. Kaplan, Moll, and Violante (2018) show that using continuous time is natural in
the context of the Heterogenous Agents New Keynesian (HANK) model. Hence the
use of differential equations for optimality relations, including the HJB equation akin
to the one examined above is possible,16and amenable to the Lie symmetries analysis.

Income and Wealth Distributions. A related class of heterogenous agents models stud-
ies income and wealth distributions. Achdou, Han, Lasry, Lions, and Moll (2020) make
an important contribution. These authors boil the model down to systems of two cou-
pled partial differential equations, the Hamilton-Jacobi-Bellman (HJB) equation for the
optimal choices of a single atomistic individual, who takes the evolution of the distri-
bution, and hence prices, as given; and the Kolmogorov Forward (KF) equation char-
acterizing the evolution of the distribution, given optimal choices of individuals. In
complementarity with the mathematical tools proposed by Achdou et al (2020), Lie
symmetries can be used to provide the entire set of relevant restrictions on the HJB and
KF equations.

Time-invariance of Preferences. This issue has been studied a number of times over
the past two decades, starting from Barro (1999) and going all the way to recent treat-
ments, such as Millner and Heal (2018), who provide an overview. Lie symmetries
provide restrictions on the time preference function. Halevy (2015) points out that

16See the discussion in Kaplan, Moll, and Violante (2018, pp. 702-3, 709-710, and Appendix B.1).
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one needs to distinguish between stationarity, time invariance, and time consistency
of preferences. He shows that any two of these properties imply the third. Hence, time
invariance is an important feature related to the time consistency of preferences. There
has been great interest in Macroeconomics in the latter issue, predominantly for con-
sumption decisions and for policymaker plans, monetary and fiscal, including debt.
Lie symmetries can provide invariance restrictions both on the time dimension and on
the cross-sectional dimension, as done above, in Symmetries 2,3, and 4. Rather than
assume certain functional forms of time preferences, these could be derived using the
tools presented above. The idea, here too, is to employ invariance restrictions based on
economic reasoning.

Indeterminacy, bubbles, and sunspots. Lie symmetries can address issues of indetermi-
nacy, bubbles, and sunspots, such as those that arise in macroeconomic models. These
topics have re-emerged given recent empirical experience with various “bubbles” phe-
nomena and new modelling; see Miao (2014, 2016). For a GE model with flexible prices,
see Pintus (2006, 2007) and for an OLG model with nominal rigidities, see Galí (2014).
By deriving the Lie symmetries of the optimality equations of the model (such as equa-
tions (8) in Pintus (2006) or in Pintus (2007), or equations (3)-(6) in Galí (2014) formu-
lated in continuous time), one obtains conditions relating the production and utility
functions to agents’ optimal behavior, as done in this paper for the utility function
and the HJB equation of the Merton (1969, 1971) model. Thereby the analysis would
yield restrictions that need to be placed on these functions. The restrictions, required
to insure invariance of the optimality equations, would shed light on the problems of
indeterminacy.

7 Conclusions

This paper has shown how the algebraic methodology of Lie symmetries can be use-
ful for formulating structural models for the design and evaluation of policy. At the
heart of the analysis is the concept of invariance. This is so as one wants to formulate
a model featuring parameters, which are policy invariant. Lie symmetries is a method-
ology long used in other sciences, such as Physics. It seems only natural to apply it in
Economics, this paper showing how to do it, and suggesting a number of important
applications out of a large set of possible models.
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Appendix
Full Derivation of the Symmetries

The prolongation equation applied to ν yields:

[
rξ JW − ρτe−ρtU(G(eρt JW)) + (rW − G(eρt JW))φ

W + φt
]

J2
WW (29)

+2AφW JW JWW − AφWW J2
W

= 0

where φW , φt, φWW are given by:

φW = φW + (φJ − ξW)JW − τW Jt − ξ J J2
W − τ J JW Jt

φt = φt − ξt JW + (φJ − τt)Jt − ξ J JW Jt − τ J J2
t

φWW = φWW + (2φW J − ξWW)JW − τWW Jt + (φJ J − 2ξW J)J
2
W

−2τW J JW Jt − ξ J J J3
W − τ J J J2

W Jt + (φJ − 2ξW)JWW

−2τW JWt − 3ξ J JW JWW − τ J Jt JWW − 2τ J JW JWt

Plugging these expressions in the prolongation formula applied to the HJB equation
(18) yields:
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rξ JW − ρτe−ρtU(G(eρt JW)) (30)

+(rW − G(eρt JW))(φW + (φJ − ξW)JW − τW Jt − ξ J J2
W − τ J JW Jt)

+(φt − ξt JW + (φJ − τt)Jt − ξ J JW Jt − τ J J2
t )J

2
WW

+2A(φW + (φJ − ξW)JW − τW Jt − ξ J J2
W − τ J JW Jt)JW JWW

−A



φWW

+(2φW J − ξWW)JW

−τWW Jt

+(φJ J − 2ξW J)J
2
W

−2τW J JW Jt

−ξ J J J3
W

−τ J J J2
W Jt

+(φJ − 2ξW)JWW

−2τW JWt

−3ξ J JW JWW

−τ J Jt JWW

−2τ J JW JWt



J2
W

= 0

Note that the variables JW , JWW , JWt, Jt are algebraically independent. This implies
that the coefficients of the different monomials in those variables are equal to zero. We
therefore proceed as follows.

(i) We first look at the different monomials in the above equation in which JWW does
not appear. Equating the coefficients of these monomials to 0 implies that:

τ J = τW = 0 (31)

ξ J J = 0

φWW = 0

φJ J − 2ξ JW = 0

2φW J − ξWW = 0

(ii) Next we look at monomials in which JWW appears in degree one. This gives
(noting that r 6= α implies that A 6= 0) the following equation (in which we gathered
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only those monomials with their coefficients):
2(φW + (φJ − ξW)JW − ξ J J2

W)JW JWW + 3ξ J J3
W JWW − (φJ − 2ξW)JWW J2

W = 0
From this we deduce that

φW = 0 (32)

ξ J = 0

φJ = 0

(iii) Now we look at the monomials containing J2
WW which give the following equa-

tion:

rξ JW − ρτe−ρtU(G(eρt JW))− (rW − G(eρt JW))ξW JW + φt − ξt JW − τt Jt = 0 (33)

From which we deduce that

φt = 0 (34)

τt = 0

From all the constraints above on the functions ξ, τ, φ we gather so far that τ =

Constant and φ = Constant and we are left with the following equation for the ξ func-
tion:

eρt(rξ − ξt − rWξW)JW + ξW G(eρt JW)eρt JW − ρτU(G(eρt JW)) = 0 (35)

From this we deduce that ξW = 0 unless the following functional equation is satis-
fied

G(eρt JW)eρt JW − γU(G(eρt JW)) = 0 (36)

in which γ is a constant scalar. The last statement is of great importance in the current
context, as will be shown below.

We end up with the following constraints for the infinitesimal generators:

φt = 0 (37)

ρτ = φ (38)
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ξW = 0 (39)

The last equation holds true unless equation (23) is satisfied.
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