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Abstract

This paper studies the matching of workers within the firm when the produc-
tivity of workers depends on how well they match with their co-workers. The
firm acts as a coordinating agent and derives value from this role. It is shown
that a worker’s contribution to firm value changes over time in a non-trivial way
as co-workers are replaced by new workers. The paper formulates the rent from
organizational capital, with worker complementarities playing a key part.

The model determines optimal hiring and replacement policies with exogenous
and with endogenous wages. The optimal stopping problem, inherent in this set-
up, depends on a state variable of worker mis-match.

The model characterizes the resulting equilibrium in terms of worker flows,
firm output, and the distribution of firm values. Illustrative simulations of the
model reveal a rich pattern of worker turnover dynamics and their connections to
the resulting firm values distribution.

The paper stresses the role of horizontal differences in worker productivity,
which are essentially different from vertical, assortative matching issues. It presents
a dynamic model of stochastically evolving relations between workers, not one of
matching fixed qualities or skills.
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1 Introduction

How does the value of the firm depend on the value of its workers? When one con-
siders firms that have little physical capital – such as IT firms, software development
firms, investment banks and the like – the neoclassical model does not seem to provide
a reasonable answer. The firm has some value that is not manifest in physical capi-
tal. Rather, Prescott and Visscher’s (1980) ‘organization capital’ may be a more relevant
concept in this context. One aspect of the latter form of capital, discussed only briefly
in that paper (pp.456-7), is the formation of teams and this is the issue taken up in the
current paper. We ask how workers affect each other in production and how this inter-
action affects firm value. Garicano and Wu (2012, p.1394) state that “organizational rent
is the economic return to organizational capital...an important theme in organizational
economics that is yet to be explored.” The current paper offers such an exploration.

To study this concept, the paper looks at a stylized model of a firm optimally match-
ing its workers. In the model, match quality derives from a production technology
whereby workers are randomly located on the Salop (1979) circle, and depends neg-
atively on the distance between them. The firm hires three workers, and each period
may replace one of them at a cost. It is shown that a worker’s contribution in a given
firm changes over time in a non-trivial way as she is matched with new co-workers.
The aim of the firm is to build a sufficiently good team. From a theoretical perspec-
tive, this may be considered a two-dimensional optimal stopping problem. The paper
formulates the optimal hiring and replacement policies which ensue.

We show that there exists an optimal stopping rule and derive it. If the two closest
workers are sufficiently close (below a threshold distance δ�), stopping behavior takes
the form of an optimal rule stating “stop replacing if the least well matched worker is
sufficiently close to the nearest worker.” The derivation underlines the importance of
worker complementarities in production. We incorporate wage bargaining so workers
earn differential wages, reflecting their relative contributions. We show that increased
bargaining power of workers has the same implications for worker replacement as a
higher cost of replacement.

1We thank Russell Cooper, Jan Eeckhout, Ricardo Lagos, Rani Spiegler, and seminar participants at various
conferences and at Yale, LSE, Norwegian Business School, Tel Aviv, Haifa, and IDC for helpful comments on previous
versions of the paper, Tanya Baron and Avihai Lifschitz for very useful suggestions, the UCL and LSE Departments
of Economics for their hospitality, and Tanya Baron for excellent research assistance. Any errors are our own.
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The replacement strategy, interacted with exogenous worker separation and firm
exit shocks, generates rich turnover dynamics. The resulting firm values distribution
are found to be – using illustrative simulations – non-normal, with negative skewness
and negative excess kurtosis. This shape reflects the fact that, as firms mature, there is
a process of forming good teams on the one hand and the effects of negative separation
and exit shocks on the other hand.

The model has the matching of workers within the firm at its focus, an aspect of
firm behavior, which usually gets little attention. Unlike assortative matching models,
which relate to agents of well-defined qualities (or types), this paper looks at stochasti-
cally evolving relations between workers. The firm is not engaged in matching within
a fixed set of workers. Rather, worker relationships change as the workers themselves
change. A given veteran worker may enjoy a better or worse working relationship with
a newly hired worker, and her work relation with another veteran worker may change
too, given the new recruit. Hence, this is a dynamic model of workers relations, not
one of matching fixed qualities or skills with appropriate pairings. In standard models
in Economics, the firm combines factors of production and is subject to shocks to its
production technology. Here it is basically a supplier of organizational capital, deriv-
ing profits and getting value from this activity. The shocks it faces are organizational
technology shocks (as well as worker separation and firm exit shocks). We study how
the efficiency of a team of workers changes stochastically over time, as long as the firm
replaces workers. We note that worker replacement, by changing the elements of the
production unit, is not always necessarily associated with improvement in productiv-
ity. For periods of time, the firm may be suffering negative organizational technology
shocks, with a decline in output and value.

Our framework is related to, but differs from, a Becker-Jovanovic-assortative match-
ing type of framework (for example, the Jovanovic (1979 a,b) model). In that model
agents in a given set learn the changing quality of a given match. Here we are analyz-
ing how a team of three workers evolves as the firm, as a coordination device, replaces
workers one at the time and is thereby modifying relations between the changing set of
workers in the production unit.

How important is team work in practice? A study by Deloitte (2016), based on their
worldwide Human Capital Trends Survey of 7,096 firms in 55 countries, reports that
there is a move in the world towards work in teams. The emerging “new organization,”
is built around highly empowered teams. Importantly for the current paper, the report
notes that relations within the team are key.

The paper proceeds as follows: in Section 2 we discuss the literature. In Section 3
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we outline the model. We describe the set up and delineate the interaction between
workers. In Section 4 we derive optimal hiring and firing policy, including a stopping
rule, and study the implications for firm value. In Section 5 we incorporate wage bar-
gaining. In Section 6 we allow for exogenous worker separation. In light of the results,
Section 7 presents the key implications of the model and discusses the role of its main
assumptions. Section 8 presents illustrative simulations of the model, exploring the
mechanisms inherent in it. Section 9 concludes. We relegate extensive derivations and
technical matters to appendices.

2 The Literature

The paper is related to models of optimal stopping, assortative matching, and search.
We briefly discuss these connections in order to explain its innovations.

The paper exploits the idea of optimal stopping, as in McCall (1970) and the rich
strand of search literature which followed (see McCall and McCall (2008), in particu-
lar chapters 3 and 4, for a comprehensive treatment). This literature does not cater,
however, for a key issue examined here – relationships between workers. Thus, in
this literature, optimal stopping is examined without any dependence on such worker
inter-relations. Conceptually this is an important distinction, and it allows us to ana-
lyze team formation in detail. Technically it also gives rise to new challenges. Total
match quality (or output) depends on two variables that are stochastic ex-ante, the dis-
tances from the best placed worker to each of her two co-workers. At the same time
the firm replaces only one worker at a time. This creates a new dimension to the op-
timal stopping problem, which, in contrast to most earlier studies, now depends on a
state variable (the distance between the two closest workers who are not replaced in a
given round). Furthermore, optimal stopping behavior depends on this state variable
in a non-trivial way, and it is not even obvious from the outset that a reasonably simple
optimal stopping rule exists.

The paper stresses the role of horizontal differences in worker productivity, as op-
posed to vertical, assortative matching issues. The literature on the latter deals with
the matching of workers of different types; see Chade, Eeckhout, and Smith (2017) for
a survey, and the prominent contributions embedding search frictions by Teulings and
Gautier (2004), Gautier, Teulings, and van Vuuren (2010), and Gautier and Teulings
(2015).

Key importance in this literature is given to the vertical or hierarchical ranking of
types. These models are defined by assumptions on the information available to agents
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about types, the transfer of utility among workers (or other mating agents), and the
particular specification of complementarity in production (such as supermodularity
of the joint production function). In the current paper, workers are ex-ante homoge-
nous, there is no prior knowledge about their complementarity with other workers
before joining the firm, and there are no direct transfers between them. In similar vein,
the models of Garicano and Rossi-Hansberg (2006) and Caliendo and Rossi-Hansberg
(2012), whereby agents organize production by matching with others in knowledge
hierarchies, stress the vertical dimension of worker communication. In terms of those
models, the current paper is relevant for the modelling of team formation at a particular
hierarchical level. Thus these approaches are complementary to ours.

As noted above, our paper shares some features with the search model of Jovanovic
(1979 a,b) but also differs substantially: in both cases, there is heterogeneity in match
productivity and imperfect information ex-ante (before match creation) about it; these
features lead to worker turnover, with good matches lasting longer.2 But there are
important differences: the Jovanovic model stresses the structural dependence of the
separation probability on job tenure and market experience; there is growth of firm-
specific capital and of the worker’s wage over the life cycle. In the current model,
instead, workers’ identities change over the life of the firm, and the focus is on the
dynamics of the relations between them, not on their own productivity.

3 The Model

In this section we first describe the set-up of the firm and the production process (3.1).
We then define worker interactions and the emerging state variables (3.2).

3.1 The Set-Up

A firm enters the market by sinking an entry cost K. The firm starts off with three
workers. In each period, it faces an exogenous exit probability. If the firm does not
exit, it can replace at most one worker. It does so by first firing one of the existing
workers without recall, and then sampling – from outside the firm – one worker. The
workers are identical in terms of individual productivity but the team’s productivity
may vary depending on how well workers fit together. Thus, we do not allow the firm
to compare the existing and the sampled worker and hire the one who works better

2Pissarides (2000, Chapter 6) incorporates this kind of model into the standard DMP search and match-
ing framework, keeping the matching function and Nash bargaining ingredients, and postulating a reser-
vation wage and reservation productivity for the worker and for the firm, respectively.
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with other workers. We rationalize this by assuming that it takes a period to learn co-
workers interactions. Replacing a worker is costly. Wages and productivity are time
independent.

The main focus of the paper is on horizontal worker heterogeneity. Thus, although
workers are identical from an ex ante perspective, the value of a worker to a firm is
random. More specifically, we assume that how well workers’ work well together de-
pends on their personal characteristics, and that these characteristics are random and
unobserved at the stage at which the firm decides whom to hire.

A common way to model worker heterogeneity, and which we use in this paper, is
to attribute to each worker a location in a metric space, and apply a distance measure
to capture the differences between the workers. In order to ensure that workers with
different locations to be equally attractive in expected terms, we have to put restrictions
on the space in which workers are located. We assume that a worker has a location on
a Salop (1979) circle and that workers are allocated uniformly on the circle.3 In this
case, the distribution of the distance from a worker to a co-worker randomly placed
on the circle is independent of the worker’s location. Note that this is not the case if
the workers are uniformly allocated on a line segment, in which case a worker at the
middle of the segment on average has a shorter distance to a randomly allocated co-
worker than a worker close to the end point.

In what follows we therefore attribute to all workers a position on a Salop circle,
with their placement randomly and independently drawn from a uniform distribu-
tion. Any new worker placement will be drawn independently from the same distrib-
ution. Each distance represents the quality of bilateral interaction, whereby a shorter
arc means the interaction works better. Note that if two workers are close on the circle,
a third worker will either be close to, or far away, from both of the workers. Hence the
distances from the third, new worker, to each of the existing workers are workers are
positively correlated.

Let β = 1
1+r denote the discount factor and r the discount rate of the firm. In the

simulations below we let β include a stationary probability of exiting the market, after
which the value of the firm is zero.

3In a two-dimensional Euclidean space, one may equivalently locate the workers along the boundary
of any simply connected set, as long as distance is measured along the boundary.
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3.2 Workers’ Productivity and Interactions

We now turn to a formal description. The three workers are located on the unit circle.
The one in the middle (out of the three) is the j worker who satisfies

min
j

3

∑
i=1

dij (1)

where dij is the distance between worker i and j, and dii = 0. We shall define two state
variables δ1, δ2 as follows:

δ1 = min
i,j

dij (2)

δ2 = min
j

dkj , k 6= i�, j� i�, j� = arg min
i,j

dij (3)

The first state variable δ1 expresses the distance between the two closest workers.
The second state variable δ2 expresses the distance between the third worker and the
closest of the two others.

The following figure illustrates:

1

2

3

1 2

Figure 1: The State Variables

Every period, each worker works together with both co-workers to produce output.
Output depends negatively on the distance between the workers. When measuring the
distance between two peripheral workers, we assume that it is measured on the seg-
ment that goes through the middle man, not the other way around the circle (even if
that is shorter). Partly this is meant to capture the structure of a team, that needs a com-
mon ground. Partly it is done for convenience, as it simplifies the algebraic expressions
somewhat. It is not important for the results.
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Production yij, i.e., output resulting from the interaction of worker i with worker j,
is negatively related to the distance between them dij as follows:

yij =
ey
3
� dij (4)

with productivity ey, not related to team quality, and which we consider exogenous and
fixed.The firm’s total output Y is then given by the linear additive function:

Y = y12 + y13 + y23 (5)

= ey� 3

∑
i=1

dij

The firm’s total output can be written as a linear additive function:

Y = ey� 2(δ1 + δ2) (6)

In the baseline case we assume that wages are independent of match quality; in
Section 4 below we introduce wage bargaining. The baseline case is consistent with a
competitive market, where firms bid for ex ante identical workers prior to knowing the
match quality. The profits (π) of the firm are then given by:

π = Y�W (7)

= ey� 2(δ1 + δ2)�W

= y� 2(δ1 + δ2)

where W is the total wage bill and y is production net of wages (ey�W).
Within a period, the firm cannot fire workers. Hence it will produce as long as

output is positive. We will assume that this is always the case. Furthermore, the firm
may want to exit the market endogenously if δ1 is sufficiently high. In what follows we
rule this out by assumption. Below we show that in equilibrium it will never be optimal
to exit the market or halt production after a bad draw if K > 4(1+ r)/3r. Allowing for
firm exit after a bad draw is trivial, though cumbersome, and does not add interesting
new results.

As already mentioned, the firm can replace up to one worker each period, at a cost
c, incurred in the following period. It replaces the worker who is further away from
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the middle worker. The new values δ01 and δ02 are random draws from a distribution
that depends on δ1. We write (δ01, δ02) = Γδ1. Figure 2 illustrates, how, without loss of
generality, workers 1 and 2, who are not replaced, are situated symmetrically around
the north pole:

Figure 2: Incumbent Workers

From Figure 2 it follows that Γ can be characterized as follows:

1. With probability 1� 3δ1, δ01 = δ1 and δ02 � uni f [δ1, 1�δ1
2 ]

2. With probability 2δ1, δ01 � uni f [0, δ1] and δ02 = δ1

3. With probability δ1, δ01 � uni f [0, δ1/2] and δ02 = δ1 � δ01

The transition probabilities, and hence continuation values upon replacement, are
a function of δ1 and are independent of δ2. Hence δ2 influences continuation values
only in states where the firm is not replacing. It follows from the definition of profits,
equation (7), that the continuation value of inaction is a function of (δ1 + δ2).

As a short detour, consider a stopping rule for the case of a two worker firm, where
output is given by y � ε, and ε is the distance between the two workers on the circle.
In this case, the firm is indifferent as to which worker to replace, and our model then
collapses to an optimal stopping model as in McCall (1970). It can also be viewed as a
simplified version of the Jovanovic (1979 a,b) model, where the entrepreneur learns the
worker type after one period.4 It follows readily that, by the optimal stopping rule, the
firm stops replacing whenever ε � ε̄, where ε̄ is given by

4Pissarides (2000, Chapter 6) studies a similar optimal stopping model.
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ε =
1
2

r

 r
1
r
(4c+ r+ 1)� 1

!
(8)

See Appendix A for details. In the next section, we derive a stopping role with similar
logic but in the more challenging, and essentially different, three worker case of the
current model.

4 Optimal Hiring and Firing with Worker Complementarities

Our aim in this section is to derive an optimal stopping rule for worker replacement.
With three workers, this problem is more complex than with two workers. The reason
is that the replacement depends not only on the position of the middle man, but also
on the distance between the two remaining workers, i.e., how well they are matched.
In this section we first show that a firm’s search rule can be characterized by an optimal
stopping rule. We then derive this stopping rule.

In the subsequent sections, we extend the model to include wage bargaining and
exogenous separations.

4.1 Optimal Stopping

In this subsection we show that the optimal stopping problem can be characterized by
a stopping rule of the form “stop searching if δ2 � δ2(δ1).” Note that the existence of
a stopping rule of this form is not obvious. For example, suppose we formulate the
stopping rule in terms of total distance X = 2(δ1 + δ2) rather than in terms of δ1 and
δ2, that is, stop if X � X̄ for some X̄ > 0. Such a stopping rule cannot be optimal.
To see this, note that (i) for a given X, the pay-off if stopping is independent of the
decomposition of X into δ1 and δ2, and (ii) the pay-off when replacing for a given X is
decreasing in δ1 (see below). Hence it cannot be optimal to apply a stopping rule under
which stopping depends only on total distance.

To show that there exists a stopping rule is surprisingly complex. Let V(δ1, δ2) de-
note the value function associated with the firm’s optimal stopping problem. It follows
directly from Proposition 4 in Stokey and Lucas (1989, p.522) that the value function
exists. In the stopping region, we have that

V(δ1, δ2) = (y� 2(δ1 + δ2))
1+ r

r
(9)
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Outside the stopping region, since a new realization of δ2 takes place when the worker
is replaced, it follows that the continuation value of V depends only on δ1. Define
V(δ1) � EV(δ01, δ02)jδ1 as the expected continuation value if the firm chooses to replace.
The value function in the case of replacement can then be written as:

V(δ1, δ2) = y� 2(δ1 + δ2) + βV̄(δ1) (10)

We start by stating an important property of the value function; see Appendix B for
the proof.

Lemma 1 V(δ1 + ∆) > V̄(δ1)� 2∆ 1+r
r

The Lemma captures the essence of replacement, which makes a given bad draw
less costly, as it may be reversed by a subsequent new draw.

For any δ1, δ2, let D(δ1, δ2) denote the value of replacing less the value of stopping,
i.e., from equations (9) and (10),

D(δ1, δ2) � y� 2(δ1 + δ2) + βV̄(δ1)� (y� 2(δ1 + δ2))
1+ r

r

= βV̄(δ1) + 2(δ1 + δ2)
1
r
� y

1
r

(11)

Consider the case in which δ1 = δ2 = δ0. The next Lemma states that that there
exists a unique δ� such that the firm does not replace if and only if δ0 � δ�, i.e., the
equation D(δ�, δ�) = 0 has a unique solution.

Lemma 2 Consider the case in which δ1 = δ2 = δ0. There exists a unique δ� such that the firm
does not replace if and only if δ0 � δ�.

The proof is given in Appendix B.
The Lemma is key for obtaining an optimal stopping rule. Inserting δ1 = δ2 = δ

0

into (11) gives that

D(δ0, δ0) = βV̄(δ0) + 4δ0
1
r
� y

1
r

(12)

From Lemma 1 it follows that this expression is monotonically increasing in δ0,
meaning that the higher is δ0, the higher is the value of replacing. This is not evident.
First, the distribution of δ01 = Γδ1 (where Γ is defined above) for a high value of δ1 does
not stochastically dominate the distribution for a low value of δ1. Second, output next
period is independent of the new draw whenever the new worker is located between
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the existing workers, and this reduces the value of replacement (this is discussed in de-
tail below). This event is more likely the higher is δ1. Still Lemma 1 makes sure that the
cost of not replacing increases sufficiently fast in δ1 so that the value of replacement,
D(δ1, δ2),is increasing in δ1.

With these two Lemmas in hand, we can prove the following proposition; see Ap-
pendix B for details of the proof:

Proposition 1 Existence of an optimal stopping rule: If δ1 > δ�1 , the firm replaces. For
any δ1 � δ�1 there exists a value δ̄2(δ1) such that the firm will stop replacing if and only if
δ2 � δ̄2(δ1). Furthermore, δ̄2(δ1) is strictly decreasing in δ1.

The finding that δ̄2(δ1) is strictly decreasing in δ1 deserves comment. At δ1 = δ�1 ,
δ̄2(δ

�) = δ�1 . As δ1 decreases below δ�1 , δ̄2(δ1) increases above δ�1 . This rules out the
possibility of non-monotonicity in stopping behavior, in the sense that a good draw
that reduces δ1 makes the firm more choosy and induces it to replace more. Appendix
C presents the full derivation of δ�1 .

4.2 Characterizing the Stopping Rule

In this section we characterize δ2(δ1) for δ1 � δ�. Now

V(δ1, δ2) = π(δ1, δ2) + β max[V(δ1, δ2), V(δ1)� c] (13)

= y� 2(δ1 + δ2) +max[
y� 2(δ1 + δ2)

r
,

V(δ1)� c
1+ r

]

By definition the optimal stopping rule must satisfy

V(δ1, δ2(δ1)) = V(δ1)� c

Or, from equation (13):

y� 2(δ1 + δ2(δ1))

r
=

V(δ1)� c
1+ r

(14)

Let Ejx denote the expectation conditional on x. Intuitively, the expected value of re-
placement, V(δ1) , is given by:
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V(δ1) = y� 2 � Ejδ1
�
δ01 + δ02

�| {z }
(1) : expected flow output

after replacement

(15)

+ Pr(δ02 � δ2(δ
0
1))| {z }

(2) : probability of
stopping

� y� 2 � Ejδ1,δ02�δ2(δ
0
1)(δ01 + δ02)

r| {z }
(3) : expected discounted value

if stopped after replacement

+

+ Pr(δ02 > δ2(δ1))| {z }
(4) : probability of

replacing again

� V(δ1)� c
1+ r| {z }

(5) : expected discounted value
if replacing again

There are two important points about this equation:
(i) The probability of stopping (2) includes the possibility that the smallest distance

δ1 has changed to δ01, and the expected value if stopped (3) takes this into account.
(ii) The probability of replacing again (4) and the expected discounted value if re-

placing again (5) build on the fact that repeated replacement can occur when the small-
est distance between the workers remained the same (follows from Lemma 1 in the
preceding sub-section).

Appendix D shows that equation (15) can be expressed as

V(δ1) = y� (1
2
+ δ1) (16)

+
(δ1 + 2δ2)y� 2δ2(2δ1 + δ2)� 2δ2

1
r

+(1� δ1 � 2δ2)
V(δ1)� c

1+ r

Let us write:

(δ1 + 2δ2)y� 2δ2(2δ1 + δ2)� 2δ2
1

= (δ1 + 2δ2)(y� 2(δ1 + δ2)) + 2δ
2
2 + 2δ1δ2
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Hence we can re-write (16) as follows:

V(δ1) = y� (1
2
+ δ1 +

δ2
1

2
) (17)

+
(δ1 + 2δ2)(y� 2(δ1 + δ2)) + 2δ

2
2 + 2δ1δ2

r

+(1� δ1 � 2δ2)
V(δ1)� c

1+ r

Substituting out V(δ1) and using (14), gives the rule (see Appendix D for details):

c+
1
2
+

δ2
1

2
� δ1 � 2δ2 =

2δ1δ2 + 2δ
2
2

r
(18)

Lemma 3 The optimal stopping rule δ̄(δ2) is implicitly defined by equation (18).

The cut-off rule has a very intuitive interpretation:
The LHS of (18) represents net costs of replacing, evaluated at the threshold δ2. If

not replacing the worker, the total distance is given by 2(δ1+ δ2).When replacing the
worker, the firm expects to have a distance of 1

2 + δ1+
δ2

1
2 (see the derivation of equation

(16) above). The firm pays c when replacing the worker. So the net costs are c+ the
expected total distance with replacement less the total distance without replacement.
The net costs are thus

c+
1
2
+

δ2
1

2
+ δ1 � 2(δ1 + δ2) = c+

1
2
+

δ2
1

2
� δ1 � 2δ2

which is the LHS of (18).
The RHS of (18) represents the gains from replacement associated with lower costs

in all future periods if the draw is good.
With probability δ1 the new worker will be between the two existing workers who

have a distance of δ1 between them. The total distance between the three workers is 2δ1.
Existing total distance is 2(δ1+ δ2), and the savings in distance is thus 2δ2. Multiplying
this with the probability of the event, δ1, gives the first term in the nominator of the
RHS of (18).

With probability 2δ2 the worker is not between the existing workers but within a
distance of δ2 from one of them. The expected distance of the new worker to the nearest
existing worker is δ2/2 and to the other existing worker it is δ1 + δ2/2. The per period
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cost savings is thus

2(δ1 + δ2)� [δ1 +
δ2

2
+ (δ1 +

δ2

2
)] = δ2

Multiplying this with the probability of the event 2δ2 gives the second term of the RHS
of (18).

We see from equation (18) that an increase in δ1 reduces the net cost of replacing
(reduces the left-hand side) and increases the gain of replacement (the right-hand side)
This means that the higher is δ1 the worse is the team and the more the firm is willing
to replace. Thus δ2(δ1) is declining, as shown previously. The intuition for optimal
behavior is simple. The gain from replacing is higher the higher is δ1 (for a given δ2), as
the higher is the probability that an improvement will take place, and the higher is the
expected gain given that an improvement takes place.

Not surprisingly, the optimal stopping rule is independent of the productivity level
ỹ, and hence also of the wage level W. For later reference we formulate this as a corol-
lary.

Corollary 1 The optimal stopping rule is independent of the wage level and the overall produc-
tivity of the firm.

4.3 Turnover Dynamics With Optimal Stopping

The following figure illustrates this optimal behavior:

Figure 3: Optimal Policy

The space of the figure is that of the two state variables, δ1 and δ2. The feasible region
is above the 45 degree as δ2 � δ1 by definition. The downward sloping line shows the
optimal replacement threshold δ2 as a function of δ1.
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With the replacement of a worker, the firm may move up and down a vertical line
for any given value of δ1 (such as movement between A, B and C or between D, E and
F). If the replacement implies a lower value of δ1, this vertical line moves to the left.
This is what happens till the firm gets into the absorbing state of no further replacement
in the shaded triangle formed by the δ�1 = δ2(δ

�
1) point, the intersection of δ2(δ1) line

with the vertical axis, and the origin (δ1 = δ2 = 0).
The following properties of turnover dynamics emerge from this figure and analy-

sis:
(i) At the NE part of the δ1 � δ2 space, δ1, δ2 are relatively high, output is low, and

the firm value is low. Hence the firm keeps replacing and there is high turnover.
(ii) In this region, some workers may stay for more than one period in the firm. The

dynamics are leftwards, with δ1 declining, but δ2 may move up and down. Note that
this means that output may decline upon replacement, whenever a higher δ2 is drawn,
as the incumbent workers work less well with the new recruit.

(iii) Some new hires may lower δ1, meaning that the best working pair is not the
same pair of workers prior to the new hire.

(iv) Above the δ2(δ1) threshold, left of δ�1 , newcomers may still be replaced, but
veteran workers are kept.

(v) In the stopping region there is concentration at a location which is random, with
a flavor of New Economic Geography agglomeration models. Thus firms specialize in
the sense of having similar workers. There is no turnover, and output and firm values
are high.

(vi) Policy may affect the regions in δ1 � δ2 space via its effect on c. The discount
rate affects the regions as well.

(vii) These replacement dynamics imply that the degree of complementarity be-
tween existing workers may change. This feature is unlike the contributions to the
matching of the agents in the assortative matching literature, where they are of fixed
types.

Our main purpose in this paper is to study the firm’s role in organization, i.e.,
matching workers, and thus replacement. This can be done in partial equilibrium. Still,
for completeness, we demonstrate in Appendix E how the model can be closed by en-
dogenizing the wage w (for the case of competitive wages, not bargained ones) and pin
it down by a free entry condition. Next, we turn to introduce wage bargaining into the
model.
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5 Wage Bargaining

In this section we assume that wages are determined by bargaining. In each period,
after the worker type is observed, the agents bargain over wages. In order to make the
bargaining game tractable, we make some simplifying assumptions. First, we assume
that the bargaining games in different periods are independent. Hence, bargaining in
a given period is essentially over output produced in that period. We also assume that
the replacement decision is determined unilaterally by the firm, like in the standard
right-to-manage model of employment and wage bargaining. Since wages in future
periods are independent of wages in the current period, there is no reason why the
firm should let current wages influence the replacement decision. We assume that the
middle man is identified before bargaining starts.

It is not obvious how bargaining between one firm and three workers should be
modelled. One possible approach is to assume that the surplus faced by the firm and
the three workers is divided in accordance with the agents’ Shapley values.5 The value
of any subset of the three workers without the firm is zero. Given our production
function, the value of one worker and a firm is zero. The value of two workers ij is yij.
With all three workers present, output is given by y12 + y13 + y23. In Appendix F we
show that the Shapley value of the firm is (y12+ y13+ y23)/3 = Y/3, while the Shapley
value of worker i is ∑j=1,j 6=i yij/3. The per period profit of the firm, equal to the firm’s
Shapley value, πS, is thus (using equation 6)

πS(δ1, δ2) =
1
3
[ỹ� 2(δ1 + δ2)] (19)

A more general alternative, to the assumption that surplus division is achieved
through the Shapley value, is to set up a bargaining game explicitly. Suppose the firm
has three agents who bargain with each of the workers separately, without getting in-
formation as to the bargaining outcome in the other games. Hence in each game, the
agent and the worker bargain under the presumption that the bargaining outcome in
the other bargaining games will be the equilibrium outcome. If an agreement is not
reached, the worker will not receive any income that period, while the replacement de-
cision and the pay-off in the following periods will be unaffected. Without loss of gen-

5Brugemann, Gautier, and Menzio (2017) show that the Shapley values are the limit equilibrium pay-
offs in the Rolodex game. In this game, the firm bargains with the workers sequentially. If a proposal
is rejected, the worker is placed at the end of the queue of workers unless the match is destroyed for
exogenous reasons. They show that as the probability of exogenous destruction goes to zero, the pay-offs
of the Rolodex game converges to the Shapley values.
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erality, let worker 2 be the middle man, worker 1 the worker closest to the middle man,
and worker 3 the worker most distant to the middle man. Define the marginal value
of worker i, Si, as the value of production with all workers present less the value of
production with all workers but worker i present. The marginal value is thus y12 + y13

for worker 1, and defined accordingly for worker 2 and 3. Hence it follows that:6

S1 = [ỹ� 2(δ1 + δ2)]� [y23 � δ2] = ỹ� y23 � 2δ1 � δ2 =
2
3

ỹ� 2δ1 � δ2

S2 = [ỹ� 2(δ1 + δ2)]� [y13 � δ1 � δ2] = ỹ� y13 � δ1 � δ2 =
2
3

ỹ� δ1 � δ2

S3 = [ỹ� 2(δ1 + δ2)]� [y12 � δ1] = ỹ� y12 � δ1 � 2δ2 =
2
3

ỹ� δ1 � 2δ2

We assume that in each of the bargaining games, the worker’s share of the surplus
is α. Since the worker’s disagreement pay-off is 0, it follows that

wi = αSi (20)

Thus, wages are highest for the middle man, second highest for worker 1, and lowest
for worker 3. Note also that the sum of the surpluses is always twice as large as total
output. This is most clearly seen when δ1 = δ2 = 0. Then the sum of the surpluses
is equal to 2ỹ, while total output is only ỹ. It reflects complementarities between the
workers, as three workers produce y12 + y13 + y23 while two worker i and j only pro-
duces yij. Hence, in order for firms to obtain strictly positive profits, we require that
α < 1/2.

By summing up the surpluses, it follows that the per period profit of the firm now
can be written as

π = ey� 2(δ1 + δ2)�W (21)

= y� 2(δ1 + δ2)�
3

∑
i

αSi

= (1� 2α)ỹ� (1� 2α)[2(δ1 + δ2)]

= (1� 2α)[ỹ� 2(δ1 + δ2)]

Note that the pay-off to the firm is equal to the Shapley value (equation (19)) when

6As above, we use exogenous productivity ey = y12 + y13 + y23 and the assumption y12 = y13 = y23.
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α = 1/3.
It follows that the model of replacement when wages are determined by bargaining

is isomorphic to a replacement model without bargaining, with per period profits – but
not the replacement cost – scaled down by a factor of (1� 2α). The next proposition
follows immediately.

Proposition 2 Suppose wages are determined by bargaining as described above, with the work-
ers’ bargaining power given by α. Then the firms’ replacement behavior is identical to the
firm’s replacement behavior when the workers’ bargaining power is 0 and the replacement cost
is c/(1� 2α).

To see this, note that the value function with bargaining reads (analogous to equa-
tion (13)), and with superscript α denoting bargaining power, is given by:

Vα(δ1, δ2) = (1� 2α)[y� 2(δ1 + δ2)] +max[(1� 2α)
y� 2(δ1 + δ2)

r
,

V(δ1)� c
1+ r

]

= (1� 2α)

8<:y� 2(δ1 + δ2)] +max[
y� 2(δ1 + δ2)

r
,

V(δ1)�c
(1�2α)

1+ r
]

9=; (22)

which is identical to the value function given by equation (13), when the worker’s bar-
gaining power is zero, and the replacement cost is c/(1 � 2α); this is modulus the
scaling parameter (1 � 2α), which does not influence the replacement decision. The
proposition thus follows.

From equation (18) it follows that the replacement threshold δ̄2(δ1) is increasing in
c; the higher is the replacement cost, the less the firm replaces. The following corollary
follows immediately.

Corollary 2 Suppose c > 0. Then an increase in the worker’s bargaining power α increases the
replacement threshold δ̄2(δ1), and hence leads to less replacement. If c = 0, then δ̄2(δ1), and
hence the firm’s replacement behavior is independent of α.

The intuition for this result is straightforward. With wage bargaining, wages will
increase if the match quality rises. Hence workers (although not necessarily the current
ones) get a share of the surplus if the match improves, while the firm pays the entire
replacement cost c. This is akin to a hold-up problem, and the firm “underinvests”
(replaces too little) in the presence of bargaining. A conjecture of our model is thus that
there will be less replacement in economies in which worker empowerment is strong.
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If c = 0, there is no direct cost of replacement. In this case the cost of replacement
is the expected lower match quality next period only. However, this cost is also scaled
down by bargaining. Therefore the replacement strategy is not distorted in this case.

6 Exogenous Replacement

We now allow, with probability λ, for one worker to exit the relationship at the end of
every period. If the worker exits, the firm is forced to search in the next period.

Thus, if the replacement shock hits, one of the workers, chosen at random, has to be
replaced. The firm can only hire one worker in any period, and hence will not voluntar-
ily replace a second worker if hit by a replacement shock. If the shock does not hit, the
firm may choose to replace one of its workers or not. While we retain the assumption
that wages are exogenous to the firm, including wage bargaining as above would be
straightforward.

Suppose one worker is replaced by the firm as above. The transition probability for
(δ1, δ2) was denoted by Γ(δ1), and depends only on δ1. We refer to this as the basic
transition probability.

The forced transition probabilities are the transition probabilities which occur when
one worker is forced to leave, to be denoted by ΓF(δ1, δ2). Which of the three incumbent
workers leaves is random: with probability 1/3 the least well located worker leaves, in
which case the transition probability is Γ(δ1); with probability 1/3, the second best lo-
cated worker leaves, in which case the transition probability is Γ(δ2); with probability
1/3, the best located worker leaves, in which case the distance between the two remain-
ing workers is min[δ1+ δ2, 1� δ1� δ2]. It follows that the forced transition probabilities
can be written as

ΓF(δ1, δ2) =
1
3

Γ(δ1) +
1
3

Γ(δ2) +
1
3

Γ(min[δ1 + δ2, 1� δ1 � δ2]) (23)

With exogenous replacement, the probability distributions for δ01 and δ02 depend on both
δ1 and δ2, not just δ1 as above. The Bellman equation reads:

V(δ1, δ2) = π(δ1, δ2) + β[λEΓF
V1(δ

0
1, δ02)� c] (24)

+(1� λ)β max[V(δ1, δ2), V̄(δ1)� c]

The first term in the bracket shows the expected NPV of the firm if the firm is hit by
a replacement shock. The second term in the bracket shows the expected NPV if the
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firm is not hit by a replacement shock. It follows directly from Proposition 4 in Stokey
and Lucas (1989, p. 522) that the value function exists. Furthermore, due to continuity,
we know that the optimal replacement strategy can be characterized by an optimal
stopping rule provided that λ is small.

7 Discussion

Given the afore-going results, we are now in the position to present the implications of
the model and discuss the consequences of some model assumptions.

7.1 Model Implications

The model stresses the matching of workers within firms. Unlike assortative match-
ing models, which relate to agents of well-defined qualities (or types), this paper looks
at the relations between workers. Indeed, over time, the identity of workers (their
“names”) may change and they do not carry qualities/skills with them. The firm is in-
terested in their interactions, modelled as the distance between them, not in their types.
Usually, the firm combines factors of production and is subject to shocks regarding its
production technology; it may also be investing in this technology (through R and D, for
example). Here it does not contribute physical capital or keep fixed workers employed.
It is basically a supplier of organizational capital. The shocks it faces are organizational
technology shocks, as well as the shocks engendering worker separation and firm exit.
Our model, then, relates to optimal firm behavior within an organizational production
technology set-up. This is an aspect of production that is typically not discussed. The
firm derives profits and gets value just from this activity. The idea is not to claim that
firms do not engage in what models usually say they do. Rather, we want to highlight
this aspect of firm activity, that gets little attention.

7.2 The Role of the Assumptions

Our model builds on several assumptions regarding technology, turnover, and search.
We briefly discuss these assumptions in light of the analysis.

One important underlying assumption is that workers are horizontally but not ver-
tically differentiated. From an ex ante perspective, workers are identical, while ex post
the workers may work more or less well together. Our assumption reflects a view that
an interesting part of team formation is related to horizontal differences, i.e., finding
workers who work particularly well together. Of course finding the correct mix of
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workers with respect to productivity (ability, “types”) is also important. As shown in
the literature review above, there exists a substantial literature on vertical worker het-
erogeneity and search. We view our contribution as complementary to this literature.

Our second assumption is the use of the Salop circle as the set of possible worker
locations. The main reason why we use the Salop circle is that it conveniently allows the
distances from a given worker to a randomly placed co-worker to be independent of the
worker’s location. Hence, this modelling technique readily implies that the worker’s
location, ex ante, does not influence her expected contribution to a team. As already
indicated in the text, this property does not carry over to a location on a line segment.
A worker located close to the middle of the line will on average be closer to randomly
allocated co-workers than a worker located close to the an end point. In addition, the
Salop circle easily captures the notion that if A works well with B and B with C, then A
and C are also likely to work well together. There may exist other stochastic structures
that capture the same type of regularities, for instance an n� 1 dimensional sphere in
an n-dimensional space. This may be an alternative specification if the firm hires more
than three workers, and exploring this is on our agenda for future research.

Throughout we have assumed that the efficiency of a given team stays constant
over time. Although a natural assumption as a starting point, one may think that the
quality of a team may develop over time. As the workers get to know each other better,
their ability to communicate and collaborate may improve. On the other hand, good
relationships may sour over time. Introducing dynamics of team quality may lead to
interesting hiring patterns. For instance, a firm that has been passive for a while may
start a replacement frenzy if the relationship suddenly deteriorates. This, too, is on our
agenda for future research.

8 Illustrative Simulations: Exploring the Mechanisms

We undertake simulations in order to explore the mechanisms inherent in the model.
They give a sense of the model’s implications for worker turnover, firm age, firm value,
and the connections between them, revealing rich patterns.

When simulating we look at the full model, with both endogenous and exogenous
replacement and allowing for exogenous firm exit, parameterized by s. The value func-
tion is given by equation (24). Let β denote the pure time preference factor, where
β = β(1� s). This value function can be found by a fixed point algorithm. Appendix
G provides full details. When simulating firms over time, we use the value function
formulated above. We simulate 1000 firms over 30 periods, and repeat it 100 times to
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eliminate run-specific effects. In the benchmark case, we set: y = 1, c = 0.01, r = 0.04
(the pure discount rate), λ = 0.1, s = 0.1.

8.1 The Distribution of Firm Values

Plotting the simulated values of (V, δ1, δ2) space one gets:
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Figure 4: Simulated V, δ1, δ2

In terms of Figure 3, Figure 4 shows the results looking from the NE towards the
stopping region in the SW, beyond the black cutoff line of the optimal stopping rule
δ2(δ1). The figure shows the concentration of high values in the stopping region, where
the slope is quite steep and where maximum value is 6.21 with δ1 = δ2 = 0 and V =
y
r (1+ r)). It also shows the large dispersion in the low value region at the front of the
figure, where the slope is relatively flat. The minimum value is computed numerically
to be 2.51 with δ1 = δ2 = 1/3. In what follows, the latter region will show up as the
long tail of the lower part of the cross-sectional value distribution
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8.2 Firm Value and Age

Figures 5 show firm value distributions and their moments by firm age.7
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Figure 5a: Cross-sectional log firm values, by age

7To construct the distributions of firm value by age we looked for all periods and all firms, when each
particular age was observed. For example, due to the firm exit shock and the entry of new firms, age 1 will
be observed not only for all firms in the first period, but also in all cases when a firm exogenously left and
was replaced by a new entrant. In this manner we gathered observations of values for all ages, from 1 to
30, and built the corresponding distributions.
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Figure 5b: Moments of cross-sectional log firms value, by age

The patterns reflect the pure process of convergence, disrupted from time to time by
workers’ exogenous exits, without the entry of new-born firms. The value of the firm
grows with age as a result of team quality improvements, while the standard deviation
is rather stable. As firms mature, more of them enter the absorbing state, with relatively
high values, and at the same time there are always unlucky firms that do not manage to
improve their teams sufficiently, or which have been hit by a forced separation shock.
Therefore the distribution becomes more and more skewed over time. Excess kurtosis
fluctuates.

These turnover dynamics of the model are very much in line with the findings in
Haltiwanger, Jarmin, and Miranda (2013), whereby, for U.S. firms, both job creation and
job destruction are high for young firms and decline as firms mature.

We run a regression of the simulation data to further study the connection between
firm value and firm age. Here we look only at a simulated subsample of firms which
have survived until the 30th period. There have been 45 such firms in our simulation.
The estimated equation is:

ln(V)t = c0 + c1 � ln(t) (25)
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where ln(V)t is the average logged value of firms at age t, t = 1, 2, ..., 30. The results are
presented in Table 1.

Table 1

The Relation Between Firm Value and Age
Regression Results of Simulated Values

c1 0.05
(0.01)

c0 1.37
(0.02)

R2 0.62

The coefficients are highly significant and imply a positive relation, illustrated be-
low:

Figure 6: Predicted firm value (logs) and firm age

Figure 6 shows that overall, despite exogenous separation shocks, firms tend to
increase in value as they mature, due to the improvement of their teams’ quality. This
is in line with the findings of Haltiwanger, Lane and Spletzer (1999) and Haltiwanger
(2011) whereby productivity rises with age for U.S. firms.

8.3 The Role of Model Parameters

The core parameters of the model at the benchmark are the worker replacement cost,
c = 0.01, the annual rate of interest, r = 0.04, the exogenous worker replacement rate,
λ = 0.1, and the exogenous firm destruction rate, s = 0.1. In addition, we set flow
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output at y = 1. Changes in these parameters affect the values of firms both directly,
through the value function and exogenous random events, and indirectly, through ad-
justments in the optimal hiring decisions. In what follows we analyze changes in these
core parameters.8

The following patterns emerge:
(i) Increases in the cost of replacement c or in the interest rate r are illustrated in

Figure 7a (and reported in rows 2-6 of Table H in Appendix H).
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Figure 7a: effects of c and r

The changes in the two parameters affect the values distribution similarly: the mean
value goes down, the coefficient of variation goes up, skewness becomes more negative
and excess kurtosis goes up from negative to positive. Both higher costs of replacement
and costs of time make the firms retain their teams rather than improve them; firms
enter the stopping region more quickly, with worse teams than before and the mean
value goes down.

As firms tend to stay with their current, randomly-drawn, teams, firm values be-
come more dispersed. For similar reasons, extreme values become relatively more fre-
quent and excess kurtosis goes up. As inaction becomes optimal for so many firms,

8Table H in Appendix H presents the moments of the log firm value distributions for the changes in
the parameter values analyzed here, relative to their benchmark values.
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firms values become more concentrated above the mean. At the same time, in any pe-
riod there are always unlucky firms, which have just obtained a very bad team as a
result of the λ or s shock. Hence skewness becomes more negative. Thus, under higher
c or higher r the distribution has a longer left tail, lower mean, and fatter and longer
tails relative to the benchmark. The sensitivity to the interest rate is higher than to
changes in replacement costs.

(ii) Increases in the exogenous worker separation rate λ are illustrated in Figure 7b
(and reported in rows 7-9 of Table H in Appendix H).
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Figure 7b: effects of λ and s

Increased separation depresses the mean value, slightly increases the coefficient of
variation, make the skewness less negative and kurtosis more negative. The possibility
of a worker’s exogenous exit is a burden on the firms, limiting their control over teams
and the possibility to improve them. Hence the decrease in mean value. With optimiza-
tion repeatedly disrupted by the shock, less firms are able to achieve the high-value
steady state in each given period, there are less values concentrated above the mean,
and skewness becomes less negative. Kurtosis becomes more negative as λ grows, im-
plying that the bulk of the dispersion now comes from moderate deviations from the
mean. Such a separation shock may hit any firm, occasionally throwing some firms
out of the stopping region, or bringing other firms into it; the sample becomes more
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homogenous in terms of values, with extreme deviations from the mean less frequent,
hence the negative excess kurtosis.

(iii) The simulated increases in the exogenous firm destruction rate s, also shown
in Figure 7b, as well as in rows 10-12 in Appendix H, Table H, brings the mean value
down, raises the coefficient of variation, and skewness becomes more negative while
kurtosis becomes less negative. As there is a positive probability for any firm of be-
ing closed down in the next period, and due to the constant inflow of new-born firms
which have not yet started to improve their teams, the mean value in the simulated
cross-section goes down as s goes up. The inflow of random worker triples increases
dispersion drastically, so the coefficient of variation goes up. As there are less firms in
the stopping region and extreme values become more frequent, excess kurtosis goes up.
The inflow of new firms with all kinds of values, including extremely low ones, makes
the left tail of the distribution longer and skewness more negative.

(iv) Going the other way and shutting down exogenous worker separation and firm
destruction, λ = s = 0, presented in row 13 of Table H, has firms just smoothly con-
verge to the stopping region. Removing exogenous uncertainty improves the mean
value drastically and it is higher than in any other specification. The coefficient of
variation is low, as a result of massive convergence. Likewise, excess kurtosis is sub-
stantially negative. Skewness is slightly negative as there is no drag on value as a result
of some unlucky firms being hit by a shock or replaced, with all the firms allowed to
converge (and they do so by period 30).

To sum up, each of the parameters above has an impact on the process of conver-
gence into the stopping region. The factors that facilitate stopping, such as high c and
r or low λ produce higher concentration of firms in the stopping region and therefore
make skewness more negative. The replacement of old firms by new ones does not
impact the process of convergence directly. It adds new triples everywhere, thereby
lengthening the left tail of the distribution and adding more extreme values – skewness
becomes more negative and excess kurtosis goes up. The factors that impede firms,
namely high c, high r, high λ, or high s decrease mean firm value. The factors that
make firms stop quickly wherever they are (high c or r), or add new triples exoge-
nously, such as high s, make values more dispersed, distribution tails fatter, and excess
kurtosis higher.
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9 Conclusions

The paper has characterized the firm in its role as a coordinating agent. Thus, output
depends on the interactions between workers, with complementarities playing a key
role. The paper has derived optimal policy, using a threshold on a state variable and
allowing for endogenous hiring and firing. Firm value emerges from optimal coordi-
nation done in this manner and fluctuates as the quality of the interaction between the
workers changes. Simulations of the model generate non-normal firm value distrib-
utions, with negative skewness and negative excess kurtosis. These moments reflect
worker turnover dynamics, whereby a large mass of firms is inactive in replacement,
having attained good team formation, while exogenous replacement and firm exit in-
duce dispersion of firms in the region of lower value. In future work we aim to examine
alternative production functions and learning and training processes within this set-up.
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10 Appendix A: Optimal Stopping in the Two Worker Case

Let V(ε) denote the value function of the firm. If no worker is replaced, the NPV pay-off
from the next period and onwards is (y� ε) 1+r

r . It follows that

V(ε) = y� ε+max β[(y� ε)
1+ r

r
, (EV(ε0)� c)] (26)

where the expectation is taken with respect to ε0. It is well known that the solution of
this problem is an optimal stopping rule of the form “stop replacing if ε � ε for some
ε̄,” where ε̄ solves

y� ε

r
=

EV(ε0)� c
1+ r

(27)

If the worker is replaced, the new worker will be within the stopping region with prob-
ability 2ε̄, and the expected distance is ε̄/2. With the complementary probability, the
distance exceeds ε̄. The expected value of the distance is (conditioning on being out-
side the stopping region) is 1/4+ ε̄/2. Inserting for V(ε) and manipulating gives that ε̄

solves
ε2

r
� (1

4
� ε)� c = 0 (28)

The first term reflects the expected gain from replacing in terms of lower distances in all
periods if the draw is good. The second term reflects the cost associated with a higher
expected distance next period, and the last term the pocket cost of replacement. Solving
the equation gives equation (8).
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11 Appendix B: Proofs Related to the Existence of the Optimal
Stopping Rule

Proof of Lemma 1. Consider replacement in two cases in which the distances between
the remaining workers are δ1 and δ1 + ∆, respectively. We refer to the two cases as the
δ1-case and the δ1 + ∆-case, respectively. The expected pay-offs only depend on the
distances between the agents, and not on their exact location on the circle. Without loss
of generality, we can therefore assume that in both cases, the two workers are located
symmetrically around the north pole, and that the draw of the new worker is the same
in the two cases. In what follows we assume that the firm in the δ1 + ∆ case follows
exactly the same replacement strategy as the firm in the δ1 case (replaces the worker
on the left hemisphere whenever the optimal strategy in the δ1 case prescribes so, the
same for the worker on the right hemisphere, and stops searching after the same draws
of location). We refer to it as the replication strategy. This is clearly in the choice set of
the firm. Hence if we can show that the replication strategy gives the firm in the δ1 + ∆
case a profit that is strictly greater than V̄(δ1)� 2∆ 1+r

r , the proof is complete.

Figure B: Lemma 1

Let δn
1 and δn

1∆ denote the state variable in the two cases after n periods, and let
∆n � δn

1 � δn
1∆. Define δn

2 and δn
2∆ correspondingly. Consider first the case with n = 1.

Let ∆δtot be defined as ∆δtot � δ1
1∆ + δ1

2∆ � δ1
1 � δ1

2. It follows that the difference in
output the first period after replacement is equal to 2∆δtot. There are three possibilities:

(i) The new worker is located below the workers in the δ1 + ∆ case, as in area A of
Figure B. It follows that ∆δtot = ∆/2, and hence that the difference in per period output
is ∆.
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(ii) The new worker is located between the workers in the δ1 case, as in area C of the
figure. Then ∆δtot = ∆, and the difference in output is 2∆.

(iii) The new worker is between a worker in the δ1 and the δ1 + ∆ case (on the same
side), as in area B of the figure. Then ∆δtot 2 [∆/2, ∆], and the difference in output is
in the interval [∆, 2∆].

Hence the difference in output the next period is at most 2∆, and with strictly posi-
tive probability it is strictly less than 2∆. It follows that the expected difference in output
next period is strictly less than 2∆. This is a general property of replacement. Hence if
we can show that ∆n � ∆ for all n with the replication strategy, it follows that the profit
in the δ1 + ∆ case under the replication strategy is strictly higher than V̄(δ1)� 2∆ 1+r

r ,
in which case the proof is complete.

If the firm in the δ1 + ∆ case follows the replication strategy, it will in all future
periods have either two, one or zero workers in a different location than in the δ1-case.
The corresponding values for ∆n are either ∆ (if both workers are in different locations),
�∆/2 (if only one of the workers is in a different location) or 0 (if none of the workers
is in a different location). Hence ∆n � ∆ for all n, and this completes the proof.

Proof of Lemma 2 First, note that if δ0 is sufficiently small, the firm will not replace.
This follows from the fact that the gain from replacing is at most 2δ0/r, which is smaller
than the direct cost c for sufficiently low values of δ0. Now from equation (11) we have
that

D(δ0, δ0) = βV̄(δ0) + 4δ0
1
r
� y

1
r

(29a)

From Lemma 1 it follows that the right-hand side is strictly increasing in δ0. Hence the
equation D(δ0, δ0) = 0 has at most one solution. The Lemma thus follows.

Proof of Proposition 1. Since D(δ1, δ2) is strictly increasing in both arguments, it
follows from Lemma 2 that the firm does not replace δ1 � δ2 � δ�1 , while it does replace
if δ�1 � δ1 � δ2, with one of the inequalities being strict. Hence it is sufficient to show
that for any δ1 � δ�1 , there exists a unique δ̄2(δ1) such that the firm stops replacing if
and only if δ2 � δ̄2(δ1) (where δ̄2(δ1) may be equal to 1

2 � δ1 in which case the firm
never replaces). However, this follows directly from the fact that D is increasing in δ2.

We only have left to prove that δ̄2(δ1) is strictly decreasing in δ1. To this end, recall
that the optimal stopping is implicitly defined by the equation D(δ1, δ2) = 0. Since D
is strictly increasing in both argument, it follows that δ̄2(δ1) is strictly decreasing in δ1.
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12 Appendix C: Solution of the Cut-Off δ�

In this Appendix we show how to derive δ�. We repeat the cut-off equation for conve-
nience

c+
1
2
+

δ2
1

2
� δ1 � 2δ2 =

2δ1δ2 + 2δ
2
2

r
(30)

If δ2 = 0, the left-hand side of (30) is strictly positive while the right-hand side is
zero (since δ1 � 1/3 by construction). As δ2 ! ∞, the left-hand side goes to minus
infinity and the right-hand side to plus infinity. Hence we know that the equation has
a solution. Since the left-hand side is strictly decreasing and the right-hand side strictly
increasing in δ2, we know that the solution is unique.

In the text we have already shown that δ2(δ1), if it exists, is decreasing in δ1. It
follows that δ� can be obtained by inserting δ2 = δ1 = δ� in (30). This gives

c+
1
2
+

δ�2

2
� δ� � 2δ� =

2δ�δ� + 2δ�2

r
(31)

Hence δ� is the unique positive root to the second order equation

c+
1
2
� δ�2 8� r

2r
� 3δ� = 0 (22)
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13 Appendix D: Derivation of Equations (16) and (18)

13.1 Derivation of Equation (16)

We refer to equation (15), repeated here for convenience:

V(δ1) = y� 2 � Ejδ1
�
δ01 + δ02

�| {z }
(1) : expected flow output

after replacement

+ Pr(δ02 � δ2(δ
0
1))| {z }

(2) : probability of
stopping

� y� 2 � Ejδ1,δ02�δ2(δ
0
1)(δ01 + δ02)

r| {z }
(3) : expected discounted value

if stopped after replacement

+

+ Pr(δ02 > δ2(δ1))| {z }
(4) : probability of

replacing again

� V(δ1)� c
1+ r| {z }

(5) : expected discounted value
if replacing again

First we show that expected flow output (1) from equation 15 is y� 2 �Ejδ1
�
δ01 + δ02

�
=

y� ( 1
2 + δ1 +

δ2
1

2 ). Consider Figure 2. The following is true:

� With probability 2 �
�

1
2 �

δ1
2

�
the new worker falls outside the arc between the two

incumbents (to the left or to the right), and the expected sum of distances between
all workers in this case will be 2

�
δ1 +

1
2 �
�

1
2 �

δ1
2

��
� With probability δ1 the new worker will fall between the two incumbents, and the

total sum of distances between all workers will be 2δ1

Summing up, the total expected sum of distances between all workers after replace-
ment is:

2 � Ejδ1
�
δ01 + δ02

�
= 2 �

�
1
2
� δ1

2

�
� 2 �

�
δ1 +

1
2
�
�

1
2
� δ1

2

��
+ δ1 � 2δ1 = (33)

=
1
2
+ δ1 +

δ2
1

2
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We now show that the probability of stopping (2) and the expected discounted value
if stopped (3) in equation 15 above is:

Pr(δ02 � δ2(δ
0
1)) �

y� 2 � Ejδ1,δ02�δ2(δ
0
1)(δ01 + δ02)

r
=
(δ1 + 2δ2)y� 2δ2(2δ1 + δ2)� 2δ2

1
r

(34)

� With probability δ1 the new worker will fall between the two incumbents, in
which case the firm will stop. The total sum of distances between the workers
in this case will be 2δ1. The expected discounted value in this case will be y�2δ1

r

� With probability 2δ2 the new worker falls outside the two incumbents and below
the threshold, and the firm will stop. The expected distance between the new
worker and the closest incumbent is δ2

2 , so that the expected total sum of distances
between the workers in this case will be 2 �

�
δ1 +

δ2
2

�
.The expected discounted

value in this case will be y�2δ1�δ2
r

Summing up:

Pr(δ02 � δ2(δ
0
1)) �

y� 2 � Ejδ1,δ02�δ2(δ
0
1)(δ01 + δ02)

r
(35)

= δ1 �
y� 2δ1

r
+ 2δ2 �

y� 2δ1 � δ2

r

=
(δ1 + 2δ2)y� 2δ2(2δ1 + δ2)� 2δ2

1
r

Finally we show that

Pr(δ02 > δ2(δ1))
V(δ1)� c

1+ r
= (1� δ1 � 2δ2)

V(δ1)� c
1+ r

(36)

This comes from the fact that with probability (1� δ1 � 2δ2) the new worker is above
the δ2 threshold. The firm will keep replacing and pay the cost c again.
We have thus fully derived equation (16).
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13.2 Derivation of Equation (18)

Substituting (14) into (17) gives

y� 2(δ1 + δ2(δ1))

r
(1+ r) + c = y� (1

2
+ δ1 +

δ2
1

2
) (37)

+
(δ1 + 2δ2)(y� 2(δ1 + δ2)) + 2δ

2
2 + 2δ1δ2

r

+(1� δ1 � 2δ2)
y� 2(δ1 + δ2(δ1))

r

Collecting all terms containing y� 2(δ1 + δ2(δ1)) on the left-hand side gives

y� 2(δ1 + δ2(δ1))

r
[1+ r� (δ1 + 2δ2)� (1� (δ1 + 2δ2))] + c� y (38)

= �(1
2
+ δ1 +

δ2
1

2
) +

2δ
2
2 + 2δ1δ2

r

which simplifies to

�2(δ1 + δ2(δ1)) + c = �(1
2
+ δ1 +

δ2
1

2
) +

2δ
2
2 + 2δ1δ2

r
(39)

Collecting terms gives

c+
1
2
+

δ2
1

2
� δ1 � 2δ2(δ1) =

2δ1δ2 + 2δ
2
2

r
(40)

which is equation (18).
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14 Appendix E: Closing the Baseline Model

Consider the model without wage bargaining (see Section 3). There are costs K � 3c to
open a firm. A zero profit condition pins down the wage (w = W

3 ):

Ejδ1δ2V(δ1, δ2; w; ey, c) = K (41)

As we have seen, the hiring rule is independent of w (since it is independent of y). If
y is sufficiently large relative to K, we know that Ejδ1δ2V(δ1, δ2; w; ey, c) > K, and there
exists a wage w� that satisfies (41). We will now give a formal proof of existence, as well
as sufficient conditions on the parameters that ensure existence and production in each
period.

Define
V � Ejδ1δ2V(δ1, δ2; 0; ey, c)

Given our assumption that the firm always produces until it is destroyed, it follows
that

Ejδ1δ2V(δ1, δ2; w; ey, c) = V � W
r0

(42)

where r0 = r/(1+ r) and where, as above, W = 3w. By assumption, V > 0 (see below).
It follows that there exists a unique W that solves the zero-profit condition given by

V � W
r0
= K (43)

The solution is given by W = r0(V � K).
We will give conditions on parameters that ensure that V > 0,and that firms, if

entering, will produce even after the worst possible draws. The supremum of per-
period output is ey (obtained with δ1 = δ2 = 0). It follows that

V <
ey
r0

Suppose

K >
4
3

1
r0

(44)

From the zero profit condition it then follows that

W = r0(V � K) < ey� 4/3 (45)
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The infimum of per period profit is πinf = ey� 4/3�W (obtained when δ1 = δ2 = 1/3).
From (45) it follows that

πinf = ey� 4/3�W > 0 (46)

Hence a sufficient condition for firms to operate after the lowest possible draws is that
(44) is satisfied.

We assume that the lower bound on wages is that W � 0. To ensure that V > K,
note that

V >
ey� 4/3

r0

since ey� 4/3 is the lowest per period output and a firm can always choose not to re-
place. Entry occurs in equilibrium if and only if it is profitable to enter when W = 0.
Hence a sufficient condition for entry to occur i is that ey�4/3

r0 > K or that ey � r0K+ 4/3
(tighter bounds can also be found).
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15 Appendix F: Shapley Values

The Shapley value of an agent is the agent’s expected marginal contribution to output
when agents enter a coalition in random order.

In the current set-up, the firm will only have a strictly positive marginal contribution
if it enters third or fourth, each happening with probability 1

4 .9 If the firm enters third,
its marginal contribution is yij, where i and j are the identities of the workers already in
place. Hence the expected contribution in this event is y12+y13+y23

3 . If the firm is the last
to enter, its marginal contribution is y12 + y13 + y23.

It follows that the Shapley value of the firm is ( 1
12 +

1
4 )(y12+ y13+ y23) =

y12+y13+y23
3 .

A worker can only have a strictly positive marginal contribution if she enters third
or fourth, each happening with probability 1

4 . If the worker enters third, the firm will
be in place with probability 2/3. Consider worker 1. If she enters third, her expected
contribution will be 1

2
2
3 (y12 + y13) =

y12+y13
3 .

If she enters fourth, total output (with her) is y12 + y13 + y23 and without her y23,
hence her marginal contribution will be y12+ y13. Worker 1’s expected marginal contri-
bution is thus ( 1

4 +
1

12 )(y12 + y13) =
y12+y13

3 . By following the exact same procedure, we
get that the expected marginal contribution of worker 2 is y23+y12

3 , and for worker 3 it is
y13+y23

3 . Generically, the Shapley value of worker i is ∑j=1,j 6=i yij
3 .

As a consistency check, note that if we sum the pay-offs of the three workers and
the firm we get that it is equal to the total pay-off y12 + y13 + y23.

9Noting that output with a firm and zero workers or with one firm and one worker is zero.
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16 Appendix G: The Simulation Methodology

The entire simulation is run in Matlab with 100 iterations. In order to account for the
variability of simulation output from iteration to iteration, we report the average and
the standard deviation of the moments and the probability density functions, as ob-
tained over 100 iterations.

Calculating the Value Function

We find the value function V numerically for the discretized space (δ1, δ2), using a
fixed-point procedure. First we guess the initial value for V in each and every point of
this two-dimensional space; we then mechanically go over all possible events (exit, in
which case the value turns zero, forced or voluntary separation, with the subsequent
draw of the third worker) to calculate the expected value in the next period, derive the
optimal decision at each point (δ1, δ2), given the initial guess V, and thus compute the
RHS of the value function equation below:

V(δ1.δ2) = π(δ1, δ2)+ β

"
s � 0+ (1� s) �

 
λ �
h

EΓF
V(δ01, δ02)� c

i
+(1� λ) � E max[V(δ1, δ2), EΓV(δ

0
1, δ

0
2)� c]

!#
(47)

Next, we define the RHS found above as our new V and repeat the calculations
above. We iterate on this procedure till the stage when the discrepancy between the V
on the LHS and the RHS is less than the pre-set tolerance level.

The mechanical steps of the program are the following:
1. We assume that each of δ1, δ2 can take only a finite number of values between

0 and 1. We call this number of values BINS_NUMBER and it may be changed in the
program.

2. However, not all the pairs (δ1, δ2) are possible, as by definition δ2 � δ1 and
δ2 � 1

2 �
δ1
2 (the latter ensures that the distances are measured “correctly” along the

circle). We impose the above restriction on the pairs constructed earlier, and so obtain
a smaller number of pairs, all of which are feasible. Note that all the distances in the
pairs are proportionate to 1/BINS_NUMBER

3. In fact, the expected value of forced and voluntary replacement, EqF
V(δ01, δ02)

and EVq(δ
0
1, δ

0
2), differ in only one respect: when the replacement is voluntary, two

remaining workers are those with δ1 between them, whereas when the replacement
is forced, it might be any of the three: δ1, δ2 or min(( δ1 + δ2), 1 � ( δ1 + δ2)), with
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equal probabilities. In the general case, if there are two workers at a distance δ, and
the third worker is drawn randomly, possible pairs in the following period may be of
the following three types: (i) δ turns out to be the smaller distance (the third worker
falls relatively far outside the arch), (ii) δ turns out to be the bigger distance (the third
worker falls outside the arch, but relatively close) (iii) the third worker falls inside the
arch, in which case the sum of the distances in the next period is δ. In the simulation
we go over all possible pairs to identify the pairs that conform with (i)-(iii). Note that
because all the distances are proportionate to 1/BINS_NUMBER, it is easy to identify
the pairs of the type (iii) described above. This can be done for any δ, whether it is δ1, δ2

or min(( δ1 + δ2), 1� ( δ1 + δ2))

4. Having the guess V, and given that all possible pairs are equally probable, we
are then able to calculate the expected values of the firm when currently there are
two workers at a distance δ. Call this value EV (δ). Then, if there is a firm with
three workers with distances (δ1.δ2), the expected value of voluntary replacement is
EV (δ1), and expected value of forced replacement is 1/3 � EV (δ1) + 1/3 � EV (δ2) +

1/3 � EV (min((δ1 + δ2), 1� (δ1 + δ2))) . Thus we are able to calculate the RHS of equa-
tion ( 47) above and compare it to the initial guess V.

We iterate the process till the biggest quadratic difference in the values of LHS and
RHS, over the pairs (δ1, δ2), of equation (47) is less than the tolerance level, which was
set at 0.0000001.

Dynamic Simulations

Once the value function is found for all possible points on the grid, the simulation is
run as follows.

1. The number of firms (N) and the number of periods (T) is defined. We use N =

1000, T = 30.

2. For each firm, three numbers are drawn randomly from a uniform distribution
U [0, 1] using the Matlab function unifrnd.

3. The distances between the numbers are calculated, the middle worker is defined,
and as a result, for each firm a vector (δ1, δ2) is found.

4. For each firm, the actual vector (δ1, δ2) is replaced by the closest point on the grid
found above

�eδ1,eδ2

�
.
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5. According to
�eδ1,eδ2

�
, using the calculations from previous section, we assign to

each firm the value and the optimal decision in the current period.

6. It is determined whether an exit shock hits. If it does, instead of the current dis-
tances of the firm, a new triple is drawn in the next period. If it does not, it is
determined whether a forced separation shock λ hits. If λ hits, a corresponding
worker is replaced by a new draw and distances are recalculated in the next pe-
riod. If it does not, and it is optimal not to replace, the distances are preserved
for the firm in the next period, as well as the value. If it is optimal to replace,
the worst worker is replaced by a new one, distances are re-calculated in the next
period, together with the value.

Steps 4-6 are repeated for each firm over all periods.
As a result, we have a T by N matrix of firm values. The whole process is iterated

100 times to eliminate run-specific effects. We also record the events history, in a T by N
matrix which assigns a value of 0 if a particular firm was inactive in a particular period,1
if it replaced voluntarily, 2 if it was forced to replace, and 3 if it was hit by an exit shock
and ceased to exist from the next period on. We use this matrix to differentiate firms by
states and to calculate firms’ ages.
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17 Appendix H: Simulation Results

Table H
The Effects of Changes in Parameters

Parameters Moments of ln(V) in period 30

c r λ s mean coef. of var. skewness excess kurtosis

1 0.01 0.04 0.1 0.1 1.46 0.13 �0.47 �0.40

2 0.05 �10 � � 1.45 0.14 �0.55 �0.28
3 0.10 � � � 1.44 0.16 �0.68 0.06

4 � 0.01 � � 1.60 0.10 �0.39 �0.53
5 � 0.04 � � 1.46 0.13 �0.47 �0.40
6 � 0.10 � � 1.15 0.20 �0.72 0.02

7 � � 0 � 1.73 0.11 �0.67 �0.04
8 � � 0.05 � 1.58 0.12 �0.58 �0.27
9 � � 0.15 � 1.46 0.13 �0.41 �0.48

10 � � � 0 2.82 0.02 �0.21 �0.52
11 � � � 0.05 1.86 0.07 �0.41 �0.40
12 � � � 0.15 1.09 0.22 �0.53 �0.32

13 � � 0 0 3.11 0.02 �0.12 �0.49

The implications of these changes are discussed in sub-section 8.3.

10As in the benchmark, row 1.
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